Answer :
To add the mixed numbers [tex]\(1 \frac{3}{8} + 1 \frac{3}{8}\)[/tex], let's break down the steps clearly.
1. Separate the whole numbers and the fractional parts for each mixed number:
- The first mixed number [tex]\(1 \frac{3}{8}\)[/tex] can be separated into the whole number 1 and the fraction [tex]\(\frac{3}{8}\)[/tex].
- The second mixed number [tex]\(1 \frac{3}{8}\)[/tex] can also be separated into the whole number 1 and the fraction [tex]\(\frac{3}{8}\)[/tex].
2. Add the whole numbers together:
[tex]\[ 1 + 1 = 2 \][/tex]
3. Add the fractional parts together:
[tex]\[ \frac{3}{8} + \frac{3}{8} \][/tex]
Since the denominators are the same, simply add the numerators:
[tex]\[ \frac{3 + 3}{8} = \frac{6}{8} \][/tex]
4. Simplify the fraction [tex]\(\frac{6}{8}\)[/tex]:
The fraction [tex]\(\frac{6}{8}\)[/tex] can be simplified by dividing both the numerator and the denominator by their greatest common divisor, which is 2:
[tex]\[ \frac{6 \div 2}{8 \div 2} = \frac{3}{4} \][/tex]
5. Combine the whole number part and the simplified fractional part:
So, we have:
[tex]\[ 2 \frac{3}{4} \][/tex]
Thus, the sum of the mixed numbers [tex]\(1 \frac{3}{8}\)[/tex] and [tex]\(1 \frac{3}{8}\)[/tex] is:
[tex]\[ \boxed{2 \frac{3}{4}} \][/tex]
The answer in simplest form is [tex]\(2 \frac{3}{4}\)[/tex], so the correct choice is:
[tex]\[ 2 \frac{3}{4} \][/tex]
1. Separate the whole numbers and the fractional parts for each mixed number:
- The first mixed number [tex]\(1 \frac{3}{8}\)[/tex] can be separated into the whole number 1 and the fraction [tex]\(\frac{3}{8}\)[/tex].
- The second mixed number [tex]\(1 \frac{3}{8}\)[/tex] can also be separated into the whole number 1 and the fraction [tex]\(\frac{3}{8}\)[/tex].
2. Add the whole numbers together:
[tex]\[ 1 + 1 = 2 \][/tex]
3. Add the fractional parts together:
[tex]\[ \frac{3}{8} + \frac{3}{8} \][/tex]
Since the denominators are the same, simply add the numerators:
[tex]\[ \frac{3 + 3}{8} = \frac{6}{8} \][/tex]
4. Simplify the fraction [tex]\(\frac{6}{8}\)[/tex]:
The fraction [tex]\(\frac{6}{8}\)[/tex] can be simplified by dividing both the numerator and the denominator by their greatest common divisor, which is 2:
[tex]\[ \frac{6 \div 2}{8 \div 2} = \frac{3}{4} \][/tex]
5. Combine the whole number part and the simplified fractional part:
So, we have:
[tex]\[ 2 \frac{3}{4} \][/tex]
Thus, the sum of the mixed numbers [tex]\(1 \frac{3}{8}\)[/tex] and [tex]\(1 \frac{3}{8}\)[/tex] is:
[tex]\[ \boxed{2 \frac{3}{4}} \][/tex]
The answer in simplest form is [tex]\(2 \frac{3}{4}\)[/tex], so the correct choice is:
[tex]\[ 2 \frac{3}{4} \][/tex]