Test the claim about the population variance [tex]\sigma^2[/tex] at the level of significance [tex]\alpha[/tex]. Assume the population is normally distributed.

Claim: [tex]\sigma^2 \geq 8.1[/tex], [tex]\alpha = 0.10[/tex]
Sample statistics: [tex]s^2 = 7.97[/tex], [tex]n = 21[/tex]

Write the null and alternative hypotheses:
[tex]\[
\begin{array}{l}
H_0: \sigma^2 \geq 8.1 \\
H_a: \sigma^2 \ \textless \ 8.1
\end{array}
\][/tex]

Calculate the standardized test statistic:
[tex]\[
x^2 = \square \quad \text{(Round to two decimal places as needed.)}
\][/tex]



Answer :

Sure, let's walk through solving this hypothesis testing problem together.

### Step-by-Step Solution:

Step 1: Write the Null and Alternative Hypotheses:

We are given the claim about the population variance:
- Null hypothesis ([tex]\(H_0\)[/tex]): [tex]\(\sigma^2 \geq 8.1\)[/tex]
- Alternative hypothesis ([tex]\(H_a\)[/tex]): [tex]\(\sigma^2 < 8.1\)[/tex]

Thus, mathematically, the hypotheses can be written as:
[tex]\[ \begin{array}{l} H_0: \sigma^2 \geq 8.1 \\ H_a: \sigma^2 < 8.1 \end{array} \][/tex]

Step 2: Identify the Given Data:

- Sample variance: [tex]\(s^2 = 7.97\)[/tex]
- Claimed population variance: [tex]\(\sigma^2 = 8.1\)[/tex]
- Sample size: [tex]\(n = 21\)[/tex]
- Level of significance: [tex]\(\alpha = 0.10\)[/tex]

Step 3: Calculate the Test Statistic:

For variance hypothesis tests, we use the chi-square test statistic, which is calculated using the following formula:
[tex]\[ \chi^2 = \frac{(n-1) \cdot s^2}{\sigma^2} \][/tex]

Substituting the given values into the formula:
- [tex]\(n = 21\)[/tex]
- [tex]\(s^2 = 7.97\)[/tex]
- [tex]\(\sigma^2 = 8.1\)[/tex]

[tex]\[ \chi^2 = \frac{(21-1) \cdot 7.97}{8.1} \][/tex]

Calculating the numerator:
[tex]\[ (21-1) \cdot 7.97 = 20 \cdot 7.97 = 159.4 \][/tex]

Calculating the chi-square statistic:
[tex]\[ \chi^2 = \frac{159.4}{8.1} \approx 19.68 \][/tex]

Step 4: Final Test Statistic:

Thus, the standardized test statistic is:
[tex]\[ \chi^2 = 19.68 \][/tex]

This concludes the step-by-step calculation of the test statistic for the given hypothesis test problem.