Find the domain of the rational expression.

[tex] f(x)=\frac{-1}{x^2+2x-35} [/tex]

The domain is [tex]$\square$[/tex] (Type your answer in interval notation.)



Answer :

To determine the domain of the rational expression

[tex]\[ f(x) = \frac{-1}{x^2 + 2x - 35}, \][/tex]

we must identify the values of [tex]\( x \)[/tex] that make the denominator equal to zero, since the expression is undefined for those values.

Firstly, we need to factor the quadratic expression in the denominator:

[tex]\[ x^2 + 2x - 35. \][/tex]

We look for two numbers that multiply to [tex]\(-35\)[/tex] and add to [tex]\(2\)[/tex]. These numbers are [tex]\(7\)[/tex] and [tex]\(-5\)[/tex]:

[tex]\[ x^2 + 2x - 35 = (x + 7)(x - 5). \][/tex]

So, the denominator can be rewritten as:

[tex]\[ x^2 + 2x - 35 = (x + 7)(x - 5). \][/tex]

Next, we set the denominator equal to zero and solve for [tex]\( x \)[/tex]:

[tex]\[ (x + 7)(x - 5) = 0. \][/tex]

This gives us two solutions:

[tex]\[ x + 7 = 0 \quad \Rightarrow \quad x = -7, \][/tex]
[tex]\[ x - 5 = 0 \quad \Rightarrow \quad x = 5. \][/tex]

Therefore, the rational expression is undefined at [tex]\( x = -7 \)[/tex] and [tex]\( x = 5 \)[/tex]. These values are not in the domain of the function.

The domain of the function is all real numbers except [tex]\( x = -7 \)[/tex] and [tex]\( x = 5 \)[/tex]. In interval notation, this is written as:

[tex]\[ (-\infty, -7) \cup (-7, 5) \cup (5, \infty). \][/tex]

Thus, the domain is:

[tex]\[ \boxed{(-\infty, -7) \cup (-7, 5) \cup (5, \infty)} \][/tex]