Select the correct answer.

A company manufactures computers. Function [tex]$N$[/tex] represents the number of components that a new employee can assemble per day. Function [tex]$E$[/tex] represents the number of components that an experienced employee can assemble per day. In both functions, [tex]$t$[/tex] represents the number of hours worked in one day.

[tex]\[
\begin{aligned}
N(t) & = \frac{50t}{t+4} \\
E(t) & = -\frac{70t}{t+3}
\end{aligned}
\][/tex]

Which function describes the difference in the number of components assembled per day by the experienced and new employees?

A. [tex]$D(t) = \frac{10t(2t-13)}{(t+3)(t+4)}$[/tex]
B. [tex]$D(t) = \frac{10t(2t+13)}{t+3}$[/tex]
C. [tex]$D(t) = \frac{10t(2t+13)}{(t+3)(t+4)}$[/tex]
D. [tex]$D(t) = \frac{10t(2t-13)}{t+4}$[/tex]



Answer :

To solve this question, we need to determine the difference between the number of components assembled by an experienced employee and a new employee per day.

Given the functions:
[tex]\[ N(t) = \frac{50 t}{t + 4} \quad \text{and} \quad E(t) = \frac{70 t}{t + 3} \][/tex]

To find the difference, we calculate:
[tex]\[ D(t) = E(t) - N(t) \][/tex]

This involves subtracting [tex]\( N(t) \)[/tex] from [tex]\( E(t) \)[/tex]:
[tex]\[ D(t) = \frac{70 t}{t + 3} - \frac{50 t}{t + 4} \][/tex]

To perform this subtraction, we first need a common denominator. The common denominator of the fractions [tex]\( \frac{70 t}{t + 3} \)[/tex] and [tex]\( \frac{50 t}{t + 4} \)[/tex] is [tex]\( (t + 3)(t + 4) \)[/tex].

Rewriting each fraction with the common denominator, we get:
[tex]\[ \frac{70 t (t + 4)}{(t + 3)(t + 4)} - \frac{50 t (t + 3)}{(t + 3)(t + 4)} \][/tex]

Now let's simplify the numerators:
[tex]\[ \frac{70 t (t + 4) - 50 t (t + 3)}{(t + 3)(t + 4)} \][/tex]

[tex]\[ = \frac{70 t^2 + 280 t - 50 t^2 - 150 t}{(t + 3)(t + 4)} \][/tex]

Combine like terms in the numerator:
[tex]\[ = \frac{(70 t^2 - 50 t^2) + (280 t - 150 t)}{(t + 3)(t + 4)} \][/tex]

[tex]\[ = \frac{20 t^2 + 130 t}{(t + 3)(t + 4)} \][/tex]

Factor out the common factor in the numerator:
[tex]\[ = \frac{10 t (2 t + 13)}{(t + 3)(t + 4)} \][/tex]

Thus, the simplified form of the difference function is:
[tex]\[ D(t) = \frac{10 t (2 t + 13)}{(t + 3)(t + 4)} \][/tex]

Therefore, the correct answer is:
C. [tex]\( D(t) = \frac{10 t (2 t + 13)}{(t + 3)(t + 4)} \)[/tex]