Find the domain of the following rational function.

[tex]\[ h(x) = \frac{x+8}{x^2-64} \][/tex]

Select the correct choice below and, if necessary, fill in the answer box to complete your choice:

A. The domain of [tex]\( h(x) \)[/tex] is restricted to [tex]\( \square \)[/tex].

(Type your answer in interval notation.)

B. The domain of [tex]\( h(x) \)[/tex] has no restrictions.



Answer :

To find the domain of the rational function [tex]\( h(x) = \frac{x+8}{x^2 - 64} \)[/tex]:

1. Identify Restrictions: The domain of a rational function is all real numbers except where the denominator is zero. So, we start by setting the denominator equal to zero and solving for [tex]\( x \)[/tex]:
[tex]\[ x^2 - 64 = 0 \][/tex]

2. Solve for [tex]\( x \)[/tex]:
[tex]\[ x^2 - 64 = (x - 8)(x + 8) = 0 \][/tex]
Setting each factor equal to zero:
[tex]\[ x - 8 = 0 \quad \Rightarrow \quad x = 8 \][/tex]
[tex]\[ x + 8 = 0 \quad \Rightarrow \quad x = -8 \][/tex]

3. Determine Domain:
Since [tex]\( x = 8 \)[/tex] and [tex]\( x = -8 \)[/tex] make the denominator zero, these values are excluded from the domain.

The domain excludes [tex]\( x = 8 \)[/tex] and [tex]\( x = -8 \)[/tex], so the domain in interval notation is all real numbers except [tex]\( -8 \)[/tex] and [tex]\( 8 \)[/tex].

We can write the domain as:
[tex]\[ (-\infty, -8) \cup (-8, 8) \cup (8, \infty) \][/tex]

Therefore, the domain of [tex]\( h(x) \)[/tex] is restricted to:
[tex]\[ \boxed{(-\infty, -8) \cup (-8, 8) \cup (8, \infty)} \][/tex]

So the correct choice is:
A. The domain of [tex]\( h(x) \)[/tex] is restricted to [tex]\(\boxed{(-\infty, -8) \cup (-8, 8) \cup (8, \infty)} \)[/tex].