Solve the inequality.
[tex]\[
\begin{array}{c}
x + \frac{1}{2} \leq -3 \text{ or } x - 3 \ \textgreater \ -2 \\
x \leq -\frac{7}{2} \text{ or } x \ \textgreater \ 1
\end{array}
\][/tex]



Answer :

To solve the inequality [tex]\( x + \frac{1}{2} \leq -3 \)[/tex] or [tex]\( x - 3 > -2 \)[/tex], we need to solve each part of the inequality separately.

### Solving the first inequality:
[tex]\[ x + \frac{1}{2} \leq -3 \][/tex]

1. Subtract [tex]\(\frac{1}{2}\)[/tex] from both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ x \leq -3 - \frac{1}{2} \][/tex]

2. Simplify the right-hand side:
[tex]\[ x \leq -3.5 \][/tex]

### Solving the second inequality:
[tex]\[ x - 3 > -2 \][/tex]

1. Add 3 to both sides to isolate [tex]\(x\)[/tex]:
[tex]\[ x > -2 + 3 \][/tex]

2. Simplify the right-hand side:
[tex]\[ x > 1 \][/tex]

### Combining the results:
The solutions to the inequalities are:
[tex]\[ x \leq -3.5 \text{ or } x > 1 \][/tex]

So, the final solution to the inequality is:
[tex]\[ x \leq -3.5 \text{ or } x > 1 \][/tex]