Given that [tex]$\sin \left(\frac{3 \pi}{16}\right) \approx 0.5556$[/tex] and [tex]$\cos \left(\frac{3 \pi}{16}\right) \approx 0.8315$[/tex], use these approximate function values to find:

a) The other four function values for [tex]$\frac{3 \pi}{16}$[/tex]:
- [tex]$\tan \left(\frac{3 \pi}{16}\right) = 0.6682$[/tex] (Round to four decimal places as needed.)
- [tex]$\csc \left(\frac{3 \pi}{16}\right) = \square$[/tex] (Round to four decimal places as needed.)
- [tex]$\sec \left(\frac{3 \pi}{16}\right) = \square$[/tex] (Round to four decimal places as needed.)
- [tex]$\cot \left(\frac{3 \pi}{16}\right) = \square$[/tex] (Round to four decimal places as needed.)

b) The six function values for [tex]$\frac{5 \pi}{16}$[/tex]:

- [tex]$\sin \left(\frac{5 \pi}{16}\right) = \square$[/tex] (Round to four decimal places as needed.)
- [tex]$\cos \left(\frac{5 \pi}{16}\right) = \square$[/tex] (Round to four decimal places as needed.)
- [tex]$\tan \left(\frac{5 \pi}{16}\right) = \square$[/tex] (Round to four decimal places as needed.)
- [tex]$\csc \left(\frac{5 \pi}{16}\right) = \square$[/tex] (Round to four decimal places as needed.)
- [tex]$\sec \left(\frac{5 \pi}{16}\right) = \square$[/tex] (Round to four decimal places as needed.)
- [tex]$\cot \left(\frac{5 \pi}{16}\right) = \square$[/tex] (Round to four decimal places as needed.)



Answer :

Given the values [tex]\(\sin \left(\frac{3 \pi}{16}\right) \approx 0.5556\)[/tex] and [tex]\(\cos \left(\frac{3 \pi}{16}\right) \approx 0.8315\)[/tex], we will calculate the other trigonometric functions for [tex]\(\frac{3\pi}{16}\)[/tex] and [tex]\(\frac{5\pi}{16}\)[/tex].

### a) Trigonometric functions for [tex]\(\frac{3\pi}{16}\)[/tex]:

1. Tangent:
[tex]\[\tan \left(\frac{3 \pi}{16}\right) = \frac{\sin \left(\frac{3 \pi}{16}\right)}{\cos \left(\frac{3 \pi}{16}\right)} \approx \frac{0.5556}{0.8315} \approx 0.6682.\][/tex]

2. Cosecant (reciprocal of sine):
[tex]\[\csc \left(\frac{3 \pi}{16}\right) = \frac{1}{\sin \left(\frac{3 \pi}{16}\right)} \approx \frac{1}{0.5556} \approx 1.7999.\][/tex]

3. Secant (reciprocal of cosine):
[tex]\[\sec \left(\frac{3 \pi}{16}\right) = \frac{1}{\cos \left(\frac{3 \pi}{16}\right)} \approx \frac{1}{0.8315} \approx 1.2026.\][/tex]

4. Cotangent (reciprocal of tangent):
[tex]\[\cot \left(\frac{3 \pi}{16}\right) = \frac{1}{\tan \left(\frac{3 \pi}{16}\right)} \approx \frac{1}{0.6682} \approx 1.4966.\][/tex]

Hence, the trigonometric functions for [tex]\(\frac{3 \pi}{16}\)[/tex] are:
- [tex]\(\tan \left(\frac{3 \pi}{16}\right) \approx 0.6682\)[/tex],
- [tex]\(\csc \left(\frac{3 \pi}{16}\right) \approx 1.7999\)[/tex],
- [tex]\(\sec \left(\frac{3 \pi}{16}\right) \approx 1.2026\)[/tex],
- [tex]\(\cot \left(\frac{3 \pi}{16}\right) \approx 1.4966\)[/tex].

### b) Trigonometric functions for [tex]\(\frac{5\pi}{16}\)[/tex] (using complementary angle [tex]\(\frac{5\pi}{16} = \frac{\pi}{2} - \frac{3\pi}{16}\)[/tex]):

1. Sine:
[tex]\[\sin \left(\frac{5 \pi}{16}\right) = \cos \left(\frac{3 \pi}{16}\right) \approx 0.8315.\][/tex]

2. Cosine:
[tex]\[\cos \left(\frac{5 \pi}{16}\right) = \sin \left(\frac{3 \pi}{16}\right) \approx 0.5556.\][/tex]

3. Tangent:
[tex]\[\tan \left(\frac{5 \pi}{16}\right) = \frac{\sin \left(\frac{5 \pi}{16}\right)}{\cos \left(\frac{5 \pi}{16}\right)} \approx \frac{0.8315}{0.5556} \approx 1.4966.\][/tex]

4. Cosecant (reciprocal of sine):
[tex]\[\csc \left(\frac{5 \pi}{16}\right) = \frac{1}{\sin \left(\frac{5 \pi}{16}\right)} \approx \frac{1}{0.8315} \approx 1.2026.\][/tex]

5. Secant (reciprocal of cosine):
[tex]\[\sec \left(\frac{5 \pi}{16}\right) = \frac{1}{\cos \left(\frac{5 \pi}{16}\right)} \approx \frac{1}{0.5556} \approx 1.7999.\][/tex]

6. Cotangent (reciprocal of tangent):
[tex]\[\cot \left(\frac{5 \pi}{16}\right) = \frac{1}{\tan \left(\frac{5 \pi}{16}\right)} \approx \frac{1}{1.4966} \approx 0.6682.\][/tex]

Hence, the trigonometric functions for [tex]\(\frac{5\pi}{16}\)[/tex] are:
- [tex]\(\sin \left(\frac{5 \pi}{16}\right) \approx 0.8315\)[/tex],
- [tex]\(\cos \left(\frac{5 \pi}{16}\right) \approx 0.5556\)[/tex],
- [tex]\(\tan \left(\frac{5 \pi}{16}\right) \approx 1.4966\)[/tex],
- [tex]\(\csc \left(\frac{5 \pi}{16}\right) \approx 1.2026\)[/tex],
- [tex]\(\sec \left(\frac{5 \pi}{16}\right) \approx 1.7999\)[/tex],
- [tex]\(\cot \left(\frac{5 \pi}{16}\right) \approx 0.6682\)[/tex].

In summary, based on the given values:
- [tex]\(\csc \left(\frac{3 \pi}{16}\right) = 1.7999\)[/tex]
- [tex]\(\sec \left(\frac{3 \pi}{16}\right) = 1.2026\)[/tex]
- [tex]\(\cot \left(\frac{3 \pi}{16}\right) = 1.4966\)[/tex]
- [tex]\(\sin \left(\frac{5 \pi}{16}\right) = 0.8315\)[/tex]
- [tex]\(\cos \left(\frac{5 \pi}{16}\right) = 0.5556\)[/tex]
- [tex]\(\tan \left(\frac{5 \pi}{16}\right) = 1.4966\)[/tex]
- [tex]\(\csc \left(\frac{5 \pi}{16}\right) = 1.2026\)[/tex]
- [tex]\(\sec \left(\frac{5 \pi}{16}\right) = 1.7999\)[/tex]
- [tex]\(\cot \left(\frac{5 \pi}{16}\right) = 0.6682\)[/tex].