The revenue function is given by [tex]R(x)=x \cdot p(x)[/tex] dollars, where [tex]x[/tex] is the number of units sold and [tex]p(x)[/tex] is the unit price. If [tex]p(x)=42(4)^{\frac{-2}{4}}[/tex], find the revenue if 12 units are sold. Round to two decimal places.

Answer:



Answer :

To find the revenue when 12 units are sold, we need to follow these steps:

1. Determine the unit price, [tex]\( p(x) \)[/tex], given by the function [tex]\( p(x) = 42 \times 4^{\frac{-2}{4}} \)[/tex].

Let's simplify [tex]\( 4^{\frac{-2}{4}} \)[/tex]:
[tex]\[ 4^{\frac{-2}{4}} = 4^{-\frac{1}{2}} = \frac{1}{4^{\frac{1}{2}}} = \frac{1}{\sqrt{4}} = \frac{1}{2} \][/tex]

Therefore, substituting back into the function, we get:
[tex]\[ p(x) = 42 \times \frac{1}{2} = 21 \][/tex]

2. Next, we calculate the revenue, [tex]\( R(x) \)[/tex], where [tex]\( x = 12 \)[/tex] units. The revenue function is given by:
[tex]\[ R(x) = x \times p(x) \][/tex]

Substituting the values:
[tex]\[ R(12) = 12 \times 21 = 252 \][/tex]

3. Finally, since we need to round the revenue to two decimal places, we observe that 252 is already an integer, so:
[tex]\[ R(12) = 252.00 \][/tex]

So, the unit price, the total revenue, and the rounded revenue when 12 units are sold are:
- Unit price, [tex]\( p(x) \)[/tex]: \[tex]$21.00 - Total revenue: \$[/tex]252.00
- Rounded revenue (to two decimal places): \$252.00