Which represents the balanced nuclear equation for the beta plus decay of C-11?

A. [tex]\({ }_6^{11} C \longrightarrow{ }_5^{11} B + { }_{+1}^0 e\)[/tex]

B. [tex]\({ }_6^{11} C \longrightarrow{ }_7^{11} N + { }_{+1}^0 e\)[/tex]

C. [tex]\({ }_6^{11} C \longrightarrow{ }_7^{11} N + { }_{-1}^0 e\)[/tex]

D. [tex]\({ }_6^{11} C \longrightarrow{ }_5^{11} B + { }_{-1}^0 e\)[/tex]



Answer :

To answer this question, we need to understand what happens during beta plus decay. In beta plus decay, a proton in the nucleus is converted into a neutron, and a positron (positively charged electron or β⁺ particle) along with a neutrino is emitted. Here's the step-by-step process for the decay:

1. Starting Element: Carbon-11 ([tex]\( \text{C-11} \)[/tex])
- Atomic number (Z) = 6
- Mass number (A) = 11

2. Emission in Beta Plus Decay:
- A proton (p) is converted into a neutron (n).
- This process emits a positron ([tex]\(_{+1}^0 \text{e} \)[/tex]).

3. Resulting Element:
- Since a proton is converted into a neutron, the atomic number decreases by 1 while the mass number stays the same.
- Therefore, the atomic number becomes 5 (from 6), and the mass number remains 11.

4. The Resulting Element: Boron-11 ([tex]\( \text{B-11} \)[/tex])
- Atomic number (Z) = 5
- Mass number (A) = 11

5. Balanced Nuclear Equation:
[tex]\[ { }_6^{11} \text{C} \longrightarrow { }_5^{11} \text{B} + { }_{+1}^0 \text{e} \][/tex]

Thus, the balanced nuclear equation for the beta plus decay of C-11 is:

[tex]\[ { }_6^{11} \text{C} \longrightarrow { }_5^{11} \text{B} + { }_{+1}^0 \text{e} \][/tex]

So, the correct answer is:

[tex]\[ { }_6^{11} \text{C} \longrightarrow { }_5^{11} \text{B} + { }_{+1}^0 \text{e} \][/tex]