Find the acute angle [tex]\theta[/tex] for the given trigonometric function. Round off results according to the table below.

[tex]\csc \theta = 1.516[/tex]

Angles and Accuracy of Trigonometric Functions
\begin{tabular}{cl}
\hline
Measurements of Angle to Nearest & Accuracy of Trigonometric Function \\
\hline
[tex]$1^{\circ}$[/tex] & 2 significant digits \\
[tex]$0.1^{\circ}$[/tex] or [tex]$10'$[/tex] & 3 significant digits \\
[tex]$0.01^{\circ}$[/tex] or [tex]$1'$[/tex] & 4 significant digits \\
\end{tabular}

Select the correct choice and, if necessary, fill in the answer box to complete your choice.

A. [tex]\theta =[/tex] [tex]\square[/tex] (Do not include the degree symbol in your answer.)
B. This value is not possible.



Answer :

To find the acute angle [tex]\(\theta\)[/tex] given that [tex]\(\csc \theta = 1.516\)[/tex], we need to follow these steps:

1. Understanding [tex]\(\csc \theta\)[/tex]: The cosecant function is the reciprocal of the sine function, i.e., [tex]\(\csc \theta = \frac{1}{\sin \theta}\)[/tex].

2. Calculating [tex]\(\sin \theta\)[/tex]:
We have [tex]\(\csc \theta = 1.516\)[/tex].
Therefore, [tex]\(\sin \theta = \frac{1}{\csc \theta} = \frac{1}{1.516} \approx 0.6594\)[/tex].

3. Finding [tex]\(\theta\)[/tex]:
To find [tex]\(\theta\)[/tex], we take the inverse sine (arcsin) of [tex]\(0.6594\)[/tex]:
[tex]\(\theta = \arcsin(0.6594) \approx 41.2717\)[/tex] degrees.

4. Rounding to the nearest [tex]\(0.1^{\circ}\)[/tex]:
According to the problem, we need to round our final answer to the nearest [tex]\(0.1^{\circ}\)[/tex].
Therefore, [tex]\(\theta \approx 41.3^{\circ}\)[/tex].

5. Determining the correct choice:
According to the given options and the required rounding accuracy (3 significant digits when rounding to [tex]\(0.1^{\circ}\)[/tex]), we check if this rounded value falls within an acute angle range. An acute angle is less than [tex]\(90^{\circ}\)[/tex].

The calculated angle [tex]\(\theta\)[/tex] is approximately [tex]\(41.3^{\circ}\)[/tex], and [tex]\(41.3\)[/tex] rounded to the nearest whole number compatible with the given choices is [tex]\(41.0\)[/tex].

Hence, the choice is:
A. [tex]\(\theta = 41.0\)[/tex]

So the final answer is:
[tex]\[ \theta = 41.0 \][/tex]