17. Solve the following inequality for [tex]\( y \)[/tex]:

[tex]\[ -8x + y \ \textless \ 1 \][/tex]

A. [tex]\( y \ \textgreater \ -1 + 8x \)[/tex]
B. [tex]\( y \ \textless \ 1 + 8x \)[/tex]
C. [tex]\( y \ \textless \ -1 + 8x \)[/tex]
D. [tex]\( y \ \textgreater \ 1 + 8x \)[/tex]
E. [tex]\( y \ \textgreater \ -1 - 8x \)[/tex]
F. [tex]\( y \ \textgreater \ 1 - 8x \)[/tex]



Answer :

To solve the inequalities for [tex]\( y \)[/tex]:

1. Consider the first inequality:
[tex]\[ -8x + y < 1 \][/tex]
To isolate [tex]\( y \)[/tex], add [tex]\( 8x \)[/tex] to both sides:
[tex]\[ y < 8x + 1 \][/tex]

2. Next, consider the second inequality:
[tex]\[ y > -1 + 8x \][/tex]
It simplifies as given directly, showing:
[tex]\[ y > 8x - 1 \][/tex]

Thus, the solution to the system of inequalities is:
[tex]\[ y < 8x + 1 \quad \text{and} \quad y > 8x - 1 \][/tex]

So, the solution set can be expressed as both:
[tex]\[ y < 8x + 1 \quad \text{and} \quad y > 8x - 1 \][/tex]

Therefore the inequalities simplify to:
[tex]\[ y < 8x + 1 \][/tex]
[tex]\[ y > 8x - 1 \][/tex]

which are represented in the following piece:
[tex]\[ y < 1 + 8x \quad \text{and} \quad y > -1 + 8x \][/tex]

Thus, the correct answer choices are:
[tex]\( y < 1 + 8x \)[/tex]
and
[tex]\( y > -1 + 8x \)[/tex].

Conclusively:
[tex]\[ \boxed{y < 8x + 1 \quad \text{and} \quad y > 8x - 1} \][/tex]