Given that [tex]\sin \theta = 0.3626[/tex] and [tex]\theta[/tex] is in quadrant I, find [tex]\sin 2\theta[/tex].

[tex]\sin 2\theta = \square[/tex]

(Round to four decimal places as needed.)



Answer :

Given that [tex]\(\sin \theta = 0.3626\)[/tex] and [tex]\(\theta\)[/tex] is in the first quadrant, we want to find [tex]\(\sin 2\theta\)[/tex].

To calculate [tex]\(\sin 2\theta\)[/tex], we can use the double-angle identity for sine:

[tex]\[ \sin 2\theta = 2 \sin \theta \cos \theta \][/tex]

First, since [tex]\(\theta\)[/tex] is in the first quadrant, both [tex]\(\sin \theta\)[/tex] and [tex]\(\cos \theta\)[/tex] are positive. We need to determine [tex]\(\cos \theta\)[/tex] using the Pythagorean identity:

[tex]\[ \cos \theta = \sqrt{1 - \sin^2 \theta} \][/tex]

Substituting [tex]\(\sin \theta = 0.3626\)[/tex] into the identity, we get:

[tex]\[ \cos \theta = \sqrt{1 - (0.3626)^2} \][/tex]

Calculating the square of [tex]\(\sin \theta\)[/tex]:

[tex]\[ (0.3626)^2 = 0.13147576 \][/tex]

Next, subtract this result from 1:

[tex]\[ 1 - 0.13147576 = 0.86852424 \][/tex]

Now, take the square root:

[tex]\[ \cos \theta = \sqrt{0.86852424} \approx 0.9319448696140775 \][/tex]

With [tex]\(\sin \theta = 0.3626\)[/tex] and [tex]\(\cos θ \approx 0.9319448696140775\)[/tex], we can now find [tex]\(\sin 2\theta\)[/tex]:

[tex]\[ \sin 2\theta = 2 \times 0.3626 \times 0.9319448696140775 \][/tex]

Calculating the product:

[tex]\[ \sin 2\theta \approx 2 \times 0.3626 \times 0.9319448696140775 \approx 0.6758464194441289 \][/tex]

Finally, we round the result to four decimal places:

[tex]\[ \sin 2\theta \approx 0.6758 \][/tex]

Therefore, [tex]\(\sin 2\theta = 0.6758\)[/tex].