Solve the system of equations.

[tex]\[
\begin{array}{l}
-7x - 6y = 4 \\
x = -3y + 8 \\
x = \square \\
y = \square
\end{array}
\][/tex]



Answer :

Certainly! To solve the system of equations:

[tex]\[ \begin{array}{l} -7x - 6y = 4 \\ x = -3y + 8 \\ \end{array} \][/tex]

we will follow these steps:

1. Substitute the expression for [tex]\( x \)[/tex] from the second equation into the first equation.

The second equation gives:
[tex]\[ x = -3y + 8 \][/tex]

Substitute [tex]\( x = -3y + 8 \)[/tex] into the first equation:
[tex]\[ -7(-3y + 8) - 6y = 4 \][/tex]

2. Simplify the resulting equation.

Distribute the [tex]\(-7\)[/tex] through the terms inside the parentheses:
[tex]\[ 21y - 56 - 6y = 4 \][/tex]

Combine like terms:
[tex]\[ 15y - 56 = 4 \][/tex]

3. Solve for [tex]\( y \)[/tex].

Add 56 to both sides to isolate the term with [tex]\( y \)[/tex]:
[tex]\[ 15y = 60 \][/tex]

Divide both sides by 15 to find [tex]\( y \)[/tex]:
[tex]\[ y = 4 \][/tex]

4. Substitute [tex]\( y \)[/tex] back into the second equation to find [tex]\( x \)[/tex].

Use the value of [tex]\( y = 4 \)[/tex] in the second equation:
[tex]\[ x = -3(4) + 8 \][/tex]
Simplify:
[tex]\[ x = -12 + 8 \][/tex]
[tex]\[ x = -4 \][/tex]

Therefore, the solution to the system of equations is:
[tex]\[ x = -4, \quad y = 4 \][/tex]