Solve the following equation using exponential and logarithmic functions:

[tex]\[ 7 + 3 \ln(t) = 15 \][/tex]

A. [tex]\( t = \frac{e^7}{3} \)[/tex]
B. [tex]\( t = 14.5 \)[/tex]
C. None of these
D. [tex]\( t = 14.39 \)[/tex]



Answer :

To solve the equation [tex]\( 7 + 3 \ln(t) = 15 \)[/tex], we need to isolate [tex]\( t \)[/tex] step-by-step. Here's how we can do it:

1. Isolate the logarithmic term:
[tex]\[ 7 + 3 \ln(t) = 15 \][/tex]
Subtract 7 from both sides:
[tex]\[ 3 \ln(t) = 15 - 7 \][/tex]
Simplify the right-hand side:
[tex]\[ 3 \ln(t) = 8 \][/tex]

2. Solve for [tex]\( \ln(t) \)[/tex]:
Divide both sides by 3:
[tex]\[ \ln(t) = \frac{8}{3} \][/tex]

3. Exponentiate both sides to solve for [tex]\( t \)[/tex]:
[tex]\[ t = e^{\frac{8}{3}} \][/tex]
Since [tex]\( \frac{8}{3} \approx 2.6666666666666665 \)[/tex], we calculate [tex]\( e^{\frac{8}{3}} \)[/tex].

4. Calculate the numerical value:
[tex]\[ t \approx 14.39 \][/tex]

So, the solution to the equation [tex]\( 7 + 3 \ln(t) = 15 \)[/tex] is approximately [tex]\( t = 14.39 \)[/tex]. The correct answer is:
[tex]\[ t = 14.39 \][/tex]