Evaluate the following expression:

[tex]\[
\begin{array}{l}
[-2 + (-12) \div (-4)] \times (-6) + \{8 - [11 - (9 + 1) \div (-2)] \div (-4)\}
\end{array}
\][/tex]



Answer :

Alright, let's break down this mathematical expression step by step.

We have the expression:
[tex]\[ [-2 + (-12) \div (-4)] (-6) + \{8 - [11 - (9 + 1) \div (-2)] \div (-4)\} \][/tex]

### First Term: [tex]\([-2 + (-12) \div (-4)]
(-6)\)[/tex]

1. Evaluate the division: [tex]\((-12) \div (-4)\)[/tex]
[tex]\[ = 3.0 \][/tex]

2. Add [tex]\(-2\)[/tex] to the result:
[tex]\[ -2 + 3.0 = 1.0 \][/tex]

3. Multiply by [tex]\(-6\)[/tex]:
[tex]\[ 1.0 * (-6) = -6.0 \][/tex]

### Second Term: [tex]\(\{8 - [11 - (9 + 1) \div (-2)] \div (-4)\}\)[/tex]

1. Evaluate the inner parentheses: [tex]\((9 + 1) \div (-2)\)[/tex]
[tex]\[ = 10 \div (-2) = -5.0 \][/tex]

2. Subtract the result from 11:
[tex]\[ 11 - (-5.0) = 11 + 5.0 = 16.0 \][/tex]

3. Divide by [tex]\(-4\)[/tex]:
[tex]\[ 16.0 \div (-4) = -4.0 \][/tex]

4. Subtract the result from 8:
[tex]\[ 8 - (-4.0) = 8 + 4.0 = 12.0 \][/tex]

### Combine the Two Terms

Now, sum the results of the two terms:
[tex]\[ -6.0 + 12.0 = 6.0 \][/tex]

Thus, the result of the expression is:
[tex]\[ 6 \][/tex]