Select the correct answer.

Based on the following tax table, how is the tax payable on a taxable income of [tex]$\$[/tex] 64,000[tex]$ calculated?

\begin{tabular}{|c|c|}
\hline Taxable Income & Tax Rate \\
\hline$[/tex]\[tex]$ 0$[/tex] to [tex]$\$[/tex] 9,875[tex]$ & $[/tex]10\%[tex]$ \\
\hline$[/tex]\[tex]$ 9,876$[/tex] to [tex]$\$[/tex] 40,125[tex]$ & $[/tex]12\%[tex]$ \\
\hline$[/tex]\[tex]$ 40,126$[/tex] to [tex]$\$[/tex] 85,525[tex]$ & $[/tex]22\%[tex]$ \\
\hline
\end{tabular}

A. $[/tex]22\% \times(\[tex]$ 64,000-\$[/tex] 40,125)[tex]$

B. $[/tex]10\% \times \[tex]$ 9,875+12\% \times(\$[/tex] 40,125-\[tex]$ 9,875)+22\% \times(\$[/tex] 85,525-\[tex]$ 64,000)$[/tex]

C. [tex]$10\% \times \$[/tex] 9,875+12\% \times(\[tex]$ 40,125-\$[/tex] 9,875)+22\% \times(\[tex]$ 64,000-\$[/tex] 40,125)[tex]$

D. $[/tex]22\% \times(\[tex]$ 85,525-\$[/tex] 64,000)$



Answer :

Let's break down the tax calculation for a taxable income of [tex]$64,000, following the tax rates provided: 1. First Bracket ($[/tex]0[tex]$ to $[/tex]9,875[tex]$ at $[/tex]10\%[tex]$): - The tax for this bracket is calculated as: \[ \$[/tex] 9,875 \times 10\% = \[tex]$ 9,875 \times 0.10 = \$[/tex] 987.5
\]

2. Second Bracket ([tex]$9,876$[/tex] to [tex]$40,125$[/tex] at [tex]$12\%$[/tex]):
- The amount in this bracket is:
[tex]\[ \$ 40,125 - \$ 9,875 = \$ 30,250 \][/tex]
- The tax for this bracket is:
[tex]\[ \$ 30,250 \times 12\% = \$ 30,250 \times 0.12 = \$ 3,630 \][/tex]

3. Third Bracket ([tex]$40,126$[/tex] to [tex]$85,525$[/tex] at [tex]$22\%$[/tex]):
- Since the income is [tex]$64,000, it falls within this bracket. - The amount in this bracket is: \[ \$[/tex] 64,000 - \[tex]$ 40,125 = \$[/tex] 23,875
\]
- The tax for this bracket is:
[tex]\[ \$ 23,875 \times 22\% = \$ 23,875 \times 0.22 = \$ 5,252.5 \][/tex]

4. Total Tax Payable:
- Adding up the tax from each bracket:
[tex]\[ \$ 987.5 + \$ 3,630 + \$ 5,252.5 = \$ 9,869.779999999999 \][/tex]

Therefore, the tax payable on a taxable income of [tex]$64,000 is calculated using the following steps, corresponding to Option C: \[ 10\% \times \$[/tex] 9,875 + 12\% \times (\[tex]$ 40,125 - \$[/tex] 9,875) + 22\% \times (\[tex]$ 64,000 - \$[/tex] 40,125)
\]

The correct answer is:
[tex]\[ \boxed{C} \][/tex]