Answered

Write [tex]\sqrt{2 \frac{2}{9}}[/tex] in the form [tex]\frac{p}{q} \sqrt{r}[/tex] where [tex]p[/tex], [tex]q[/tex], and [tex]r[/tex] are integers.



Answer :

To express [tex]\(\sqrt{2 \frac{2}{9}}\)[/tex] in the form [tex]\(\frac{p}{q} \sqrt{r}\)[/tex], we will follow these steps:

1. Convert the mixed number to an improper fraction:
The mixed number [tex]\(2 \frac{2}{9}\)[/tex] can be converted to an improper fraction. First, multiply the whole number by the denominator and add the numerator:

[tex]\[ 2 \frac{2}{9} = 2 + \frac{2}{9} = \frac{2 \times 9 + 2}{9} = \frac{18 + 2}{9} = \frac{20}{9} \][/tex]

2. Calculate the square root of the improper fraction:
We need to find [tex]\(\sqrt{\frac{20}{9}}\)[/tex]. The square root of a fraction can be expressed as the square root of the numerator over the square root of the denominator:

[tex]\[ \sqrt{\frac{20}{9}} = \frac{\sqrt{20}}{\sqrt{9}} \][/tex]

3. Simplify the square roots:
The square root of 9 is a perfect square and equals 3, so:

[tex]\[ \sqrt{\frac{20}{9}} = \frac{\sqrt{20}}{3} \][/tex]

4. Express the square root of 20:
The square root of 20 can be simplified by factoring 20 into its prime factors:

[tex]\[ 20 = 4 \times 5 \][/tex]

Since the square root of a product is the product of the square roots:

[tex]\[ \sqrt{20} = \sqrt{4 \times 5} = \sqrt{4} \times \sqrt{5} = 2\sqrt{5} \][/tex]

5. Combine the simplified terms:
Now, substituting [tex]\(\sqrt{20}\)[/tex] with [tex]\(2\sqrt{5}\)[/tex] in our expression:

[tex]\[ \sqrt{\frac{20}{9}} = \frac{2\sqrt{5}}{3} \][/tex]

6. Write the final expression:
Now we have the form [tex]\(\frac{p}{q}\sqrt{r}\)[/tex] where [tex]\(p = 2\)[/tex], [tex]\(q = 3\)[/tex], and [tex]\(r = 5\)[/tex]:

[tex]\[ \sqrt{2 \frac{2}{9}} = \frac{2}{3} \sqrt{5} \][/tex]

Thus, the expression [tex]\(\sqrt{2 \frac{2}{9}}\)[/tex] in the form [tex]\(\frac{p}{q} \sqrt{r}\)[/tex] is [tex]\(\frac{2}{3} \sqrt{5}\)[/tex].