To find the probability of selecting 9 or more girls from the given table of probabilities, we need to sum the probabilities corresponding to the values from 9 to 14.
The table of probabilities is:
[tex]\[
\begin{array}{r|c|r|c|r|l}
x \, (\text{girls}) & P(x) & x \, (\text{girls}) & P(x) & x \, (\text{girls}) & P(x) \\
\hline
0 & 0.000 & 5 & 0.132 & 10 & 0.054 \\
1 & 0.001 & 6 & 0.190 & 11 & 0.019 \\
2 & 0.007 & 7 & 0.209 & 12 & 0.005 \\
3 & 0.026 & 8 & 0.176 & 13 & 0.001 \\
4 & 0.069 & 9 & 0.112 & 14 & 0.000
\end{array}
\][/tex]
We focus on [tex]\(x \geq 9\)[/tex]. So, we extract the probabilities for [tex]\(x = 9, 10, 11, 12, 13, 14\)[/tex]:
[tex]\[
\begin{array}{r|c}
x \, (\text{girls}) & P(x) \\
\hline
9 & 0.112 \\
10 & 0.054 \\
11 & 0.019 \\
12 & 0.005 \\
13 & 0.001 \\
14 & 0.000 \\
\end{array}
\][/tex]
Now, we sum these probabilities:
[tex]\[
P(x \geq 9) = P(9) + P(10) + P(11) + P(12) + P(13) + P(14)
\][/tex]
Substituting the values from the table:
[tex]\[
P(x \geq 9) = 0.112 + 0.054 + 0.019 + 0.005 + 0.001 + 0.000
\][/tex]
Adding these probabilities together:
[tex]\[
P(x \geq 9) = 0.112 + 0.054 + 0.019 + 0.005 + 0.001 + 0.000 = 0.191
\][/tex]
Therefore, the probability of selecting 9 or more girls ([tex]\(P(x \geq 9)\)[/tex]) is:
[tex]\[
\boxed{0.191}
\][/tex]