Previously, we found that the expression [tex]6x + 8[/tex] represents the perimeter of the first rectangle.

Now, find the expression that represents the perimeter of the second rectangle. Then, use the two expressions to find the combined perimeter of the rectangles.

A. [tex]18x + 4y + 7[/tex]
B. [tex]18x + 2y + 6[/tex]
C. [tex]22xy + 6[/tex]
D. [tex]24x + 2y + 10[/tex]



Answer :

Let's start by examining the problem step by step.

### Step 1: Given Data
We know that the perimeter of the first rectangle is represented by the expression:
[tex]\[6x + 8\][/tex]

### Step 2: Expressions for the Second Rectangle
We are given several possible expressions for the perimeter of the second rectangle:
1. [tex]\(18x + 4y + 7\)[/tex]
2. [tex]\(18x + 2y + 6\)[/tex]
3. [tex]\(22xy + 6\)[/tex]
4. [tex]\(24x + 2y + 10\)[/tex]

### Step 3: Selecting Valid Perimeter Expressions
To determine which expression properly represents the perimeter of a rectangle, recall that the perimeter formula [tex]\(P\)[/tex] for a rectangle with length [tex]\(l\)[/tex] and width [tex]\(w\)[/tex] is given by:
[tex]\[P = 2l + 2w\][/tex]

Therefore, the valid expressions should be linear combinations of the dimensions. Expression 3, [tex]\(22xy + 6\)[/tex], is not linear due to the multiplication of [tex]\(x\)[/tex] and [tex]\(y\)[/tex]. Let's consider the valid remaining expressions:

1. [tex]\(18x + 4y + 7\)[/tex]
2. [tex]\(18x + 2y + 6\)[/tex]
4. [tex]\(24x + 2y + 10\)[/tex]

### Step 4: Calculating Combined Perimeters
We now need to find the combined perimeter of the first and second rectangles using the selected expressions.

1. First Combination:
- Perimeter of first rectangle: [tex]\(6x + 8\)[/tex]
- Perimeter of second rectangle: [tex]\(18x + 4y + 7\)[/tex]
- Combined perimeter: [tex]\( (6x + 8) + (18x + 4y + 7)\)[/tex]
- Simplifying this:
[tex]\[ 6x + 18x + 4y + 8 + 7 = 24x + 4y + 15 \][/tex]
- Result: [tex]\((24x, 4y, 15)\)[/tex]

2. Second Combination:
- Perimeter of first rectangle: [tex]\(6x + 8\)[/tex]
- Perimeter of second rectangle: [tex]\(18x + 2y + 6\)[/tex]
- Combined perimeter: [tex]\( (6x + 8) + (18x + 2y + 6)\)[/tex]
- Simplifying this:
[tex]\[ 6x + 18x + 2y + 8 + 6 = 24x + 2y + 14 \][/tex]
- Result: [tex]\((24x, 2y, 14)\)[/tex]

3. Third Combination:
- Perimeter of first rectangle: [tex]\(6x + 8\)[/tex]
- Perimeter of second rectangle: [tex]\(24x + 2y + 10\)[/tex]
- Combined perimeter: [tex]\( (6x + 8) + (24x + 2y + 10)\)[/tex]
- Simplifying this:
[tex]\[ 6x + 24x + 2y + 8 + 10 = 30x + 2y + 18 \][/tex]
- This is less logical given the actual combined result found, specifically looking at the correct combined perimeter expressed below.

Hence, while the specific values for processes 1 and 2 above are kept closer to the combined perimeter logics.

### Step 5: Final Combined Expression
The total combined perimeter can then be summarized effectively ensuring it's a dual combination:
[tex]\[ \text{Combined Perimeter: }\quad (48, 2, 18) \][/tex]

### Conclusion
Hence our chosen perimeter expressions and their evaluated combined perimeter should match each section respectively:
1. [tex]\( (24, 4, 15) \)[/tex]
2. [tex]\( (24, 2, 14) \)[/tex]
3. Ensuring robust combined total [tex]\( (48, 2, 18) \)[/tex].

Thus, comparing, resulting gives these useful evaluating points for combined perimeter values further ensuring the proper combination.