Find the distance between the points [tex]\left(\frac{5}{2}, 3\right)[/tex] and [tex]\left(\frac{3}{2}, 8\right)[/tex].

A. [tex]\sqrt{26}[/tex]

B. [tex]\sqrt{41}[/tex]

C. [tex]\sqrt{24}[/tex]

D. [tex]\sqrt{137}[/tex]



Answer :

To find the distance between the points [tex]\((\frac{5}{2}, 3)\)[/tex] and [tex]\((\frac{3}{2}, 8)\)[/tex], follow these steps:

1. Identify the coordinates of the points:
- Point 1: [tex]\((x_1, y_1) = (\frac{5}{2}, 3)\)[/tex]
- Point 2: [tex]\((x_2, y_2) = (\frac{3}{2}, 8)\)[/tex]

2. Calculate the difference in the x-coordinates (Δx) and the y-coordinates (Δy):
[tex]\[ \Delta x = x_2 - x_1 = \frac{3}{2} - \frac{5}{2} = -1 \][/tex]
[tex]\[ \Delta y = y_2 - y_1 = 8 - 3 = 5 \][/tex]

3. Square these differences:
[tex]\[ (\Delta x)^2 = (-1)^2 = 1 \][/tex]
[tex]\[ (\Delta y)^2 = 5^2 = 25 \][/tex]

4. Sum these squared differences to find the squared distance:
[tex]\[ (\Delta x)^2 + (\Delta y)^2 = 1 + 25 = 26 \][/tex]

5. Take the square root of this sum to find the Euclidean distance between the points:
[tex]\[ \text{Distance} = \sqrt{26} \][/tex]

Thus, the distance between the points [tex]\((\frac{5}{2}, 3)\)[/tex] and [tex]\((\frac{3}{2}, 8)\)[/tex] is [tex]\(\sqrt{26}\)[/tex].

Therefore, the correct answer is:
A) [tex]\(\sqrt{26}\)[/tex]