What is the end behavior of the graph of [tex]$f(x) = x^5 - 8x^4 + 16x^3$[/tex]?

A. [tex]$f(x) \rightarrow -\infty$[/tex] as [tex][tex]$x \rightarrow -\infty$[/tex][/tex]; [tex]f(x) \rightarrow -\infty$[/tex] as [tex]$x \rightarrow +\infty$[/tex]
B. [tex]$f(x) \rightarrow -\infty[tex]$[/tex] as [tex]$[/tex]x \rightarrow -\infty$[/tex]; [tex]f(x) \rightarrow +\infty$[/tex] as [tex]$x \rightarrow +\infty$[/tex]
C. [tex][tex]$f(x) \rightarrow +\infty$[/tex][/tex] as [tex]$x \rightarrow -\infty$[/tex]; [tex]f(x) \rightarrow -\infty$[/tex] as [tex]$x \rightarrow +\infty[tex]$[/tex]
D. [tex]$[/tex]f(x) \rightarrow +\infty$[/tex] as [tex]$x \rightarrow -\infty$[/tex]; [tex]f(x) \rightarrow +\infty$[/tex] as [tex]$x \rightarrow +\infty$[/tex]

The graph touches, but does not cross, the [tex]x[/tex]-axis at [tex]x = \square[/tex]

The graph of the function crosses the [tex]x[/tex]-axis at [tex]x = \square[/tex]



Answer :

To determine the end behavior of the function [tex]\( f(x) = x^5 - 8x^4 + 16x^3 \)[/tex], we need to analyze the term with the highest power, as it dominates the behavior of the function for very large or very small values of [tex]\( x \)[/tex].

### Step 1: End Behavior Analysis

The highest power term in [tex]\( f(x) \)[/tex] is [tex]\( x^5 \)[/tex]:
- As [tex]\( x \to -\infty \)[/tex]:
- The term [tex]\( x^5 \)[/tex] will approach [tex]\( -\infty \)[/tex].
- Therefore, [tex]\( f(x) \to -\infty \)[/tex].

- As [tex]\( x \to +\infty \)[/tex]:
- The term [tex]\( x^5 \)[/tex] will approach [tex]\( +\infty \)[/tex].
- Therefore, [tex]\( f(x) \to +\infty \)[/tex].

Based on this analysis, the end behavior of the function is:

[tex]\[ f(x) \rightarrow -\infty \text{ as } x \rightarrow -\infty \][/tex]
[tex]\[ f(x) \rightarrow +\infty \text{ as } x \rightarrow +\infty \][/tex]

### Step 2: Identifying Roots

To find the points where the graph touches or crosses the x-axis, we need to solve for [tex]\( f(x) = 0 \)[/tex]:

[tex]\[ x^5 - 8x^4 + 16x^3 = 0 \][/tex]

Factoring out the common term [tex]\( x^3 \)[/tex]:

[tex]\[ x^3(x^2 - 8x + 16) = 0 \][/tex]

Solving the factored equation:

1. [tex]\( x^3 = 0 \)[/tex] gives roots [tex]\( x = 0 \)[/tex] (with multiplicity 3).
2. [tex]\( x^2 - 8x + 16 = 0 \)[/tex] is a quadratic equation. Factoring, we get:
[tex]\[ (x - 4)^2 = 0 \][/tex]
This gives a root [tex]\( x = 4 \)[/tex] (with multiplicity 2).

### Step 3: Behavior at the Roots

- The root [tex]\( x = 0 \)[/tex] has a multiplicity of 3, which means the function will touch the x-axis at this point without crossing it.
- The root [tex]\( x = 4 \)[/tex] has a multiplicity of 2, indicating the function will also touch the x-axis at this point without crossing it.

### Summary

The correct end behavior and the behavior at the roots can be stated as follows:
- [tex]\( f(x) \to -\infty \)[/tex] as [tex]\( x \to -\infty \)[/tex]
- [tex]\( f(x) \to +\infty \)[/tex] as [tex]\( x \to +\infty \)[/tex]
- The graph touches, but does not cross, the x-axis at [tex]\( x = 4 \)[/tex]
- The graph crosses the x-axis at [tex]\( x = 0 \)[/tex]

Thus, filling in the initial problem's statements:

- End behavior:
[tex]\[ f(x) \rightarrow -\infty \text{ as } x \rightarrow -\infty ; \quad f(x) \rightarrow +\infty \text{ as } x \rightarrow +\infty \][/tex]

- The graph touches, but does not cross, the x-axis at [tex]\( x = 4 \)[/tex].
- The graph crosses the x-axis at [tex]\( x = 0 \)[/tex].