If [tex]f(x) = 2x^2[/tex] is changed to create [tex]a(x) = \left(-\frac{1}{2}\right)x^2[/tex], what does [tex]a(x)[/tex] look like now?



Answer :

Certainly! Let's find the function [tex]\( g(x) \)[/tex] given the following functions:

[tex]\[ f(x) = 2x^2 \][/tex]
[tex]\[ a(x) = \left( -\frac{1}{2} \right) x^2 \][/tex]

Our goal is to determine [tex]\( g(x) \)[/tex], which is the difference between [tex]\( f(x) \)[/tex] and [tex]\( a(x) \)[/tex]. Mathematically, we express this as:

[tex]\[ g(x) = f(x) - a(x) \][/tex]

Substituting the given functions [tex]\( f(x) \)[/tex] and [tex]\( a(x) \)[/tex] into this expression, we have:

[tex]\[ g(x) = 2x^2 - \left( -\frac{1}{2} \right)x^2 \][/tex]

Now, simplify the expression inside the parentheses:

[tex]\[ g(x) = 2x^2 + \frac{1}{2}x^2 \][/tex]

Next, combine the like terms [tex]\( 2x^2 \)[/tex] and [tex]\( \frac{1}{2}x^2 \)[/tex]:

To do this, make the denominators the same:
[tex]\[ 2x^2 = \frac{4}{2}x^2 \][/tex]

So,

[tex]\[ g(x) = \frac{4}{2}x^2 + \frac{1}{2}x^2 \][/tex]
[tex]\[ g(x) = \left( \frac{4}{2} + \frac{1}{2} \right)x^2 \][/tex]
[tex]\[ g(x) = \frac{5}{2}x^2 \][/tex]

Thus, the function [tex]\( g(x) \)[/tex] is:

[tex]\[ g(x) = \frac{5}{2}x^2 \][/tex]

There you have it, the function [tex]\( g(x) \)[/tex] based on your new definitions is:

[tex]\[ g(x) = \frac{5}{2}x^2 \][/tex]