Statistical models predict that the price (in dollars) of a 500 GB hard drive will change according to the function [tex]$p(t)=600-2t^2$[/tex], where [tex]$t$[/tex] is the month. Which expression gives the number of months [tex][tex]$t$[/tex][/tex] (passed since January 1) in terms of the price [tex]$p$[/tex]?

A. [tex]$300-0.5p$[/tex]
B. [tex][tex]$300-p$[/tex][/tex]
C. [tex]$\sqrt{300-0.5p}$[/tex]
D. [tex]$\sqrt{300-p}$[/tex]



Answer :

To determine the number of months [tex]\(t\)[/tex] in terms of the price [tex]\(p\)[/tex], we need to manipulate the given function [tex]\(p(t) = 600 - 2t^2\)[/tex] to express [tex]\(t\)[/tex] as a function of [tex]\(p\)[/tex].

1. Start with the given equation:
[tex]\[ p = 600 - 2t^2 \][/tex]

2. Isolate the term with [tex]\(t\)[/tex]:
[tex]\[ 2t^2 = 600 - p \][/tex]

3. Divide both sides by 2 to solve for [tex]\(t^2\)[/tex]:
[tex]\[ t^2 = \frac{600 - p}{2} \][/tex]

4. Simplify the right-hand side:
[tex]\[ t^2 = 300 - 0.5p \][/tex]

5. Take the square root of both sides to solve for [tex]\(t\)[/tex]:
[tex]\[ t = \sqrt{300 - 0.5p} \][/tex]

So, the correct expression for the number of months [tex]\(t\)[/tex] in terms of the price [tex]\(p\)[/tex] is:
[tex]\[ t = \sqrt{300 - 0.5p} \][/tex]

Therefore, the correct option is:
C. [tex]\( \sqrt{300 - 0.5p} \)[/tex]