Polygon KLMN is drawn with vertices at [tex]\( K (1,5), L(1,0), M (-1,-1), N (-4,2) \)[/tex]. Determine the image vertices of [tex]\( N \)[/tex] if the preimage is rotated [tex]\( 90^{\circ} \)[/tex] counterclockwise.

A. [tex]\( N(-4,2) \)[/tex]
B. [tex]\( N(4,-2) \)[/tex]
C. [tex]\( N(-2,-4) \)[/tex]
D. [tex]\( N(2,4) \)[/tex]



Answer :

Given the vertices of polygon [tex]\( KLMN \)[/tex] with the initial coordinates of point [tex]\( N \)[/tex] being [tex]\( (-4, 2) \)[/tex], we need to determine the new coordinates of this point after a [tex]\( 90^\circ \)[/tex] counterclockwise rotation.

When a point [tex]\((x, y)\)[/tex] is rotated [tex]\( 90^\circ \)[/tex] counterclockwise around the origin, the new coordinates [tex]\((x', y')\)[/tex] are given by the transformation:

[tex]\[ x' = -y \][/tex]
[tex]\[ y' = x \][/tex]

Now, let's apply this transformation to point [tex]\( N \)[/tex] with coordinates [tex]\((-4, 2)\)[/tex]:

1. Calculate the new [tex]\( x' \)[/tex] coordinate:
[tex]\[ x' = -y = -2 \][/tex]

2. Calculate the new [tex]\( y' \)[/tex] coordinate:
[tex]\[ y' = x = -4 \][/tex]

Thus, the new coordinates of point [tex]\( N \)[/tex] after a [tex]\( 90^\circ \)[/tex] counterclockwise rotation are [tex]\((-2, -4)\)[/tex].

Therefore, the image of [tex]\( N(-4,2) \)[/tex] after the rotation is [tex]\( N'(-2,-4) \)[/tex].