The equation [tex]\sin \left(25^{\circ}\right) = \frac{9}{6}[/tex] can be used to find the length of [tex]\overline{AB}[/tex]. What is the length of [tex]\overline{AB}[/tex]? Round to the nearest tenth.

A. 19.3 in.
B. 21.3 in.
C. 23.5 in.
D. 68.0 in.



Answer :

To find the length of [tex]\(\overline{AB}\)[/tex] given the equation [tex]\(\sin(25^\circ) = \frac{9}{\overline{AB}}\)[/tex], we need to follow these steps:

1. Understand the Trigonometric Relationship:

The equation [tex]\(\sin(25^\circ) = \frac{9}{\overline{AB}}\)[/tex] can be interpreted within the context of a right triangle, where:
- 25° is one of the angles.
- The length of the side opposite the 25° angle is 9 units.
- [tex]\(\overline{AB}\)[/tex] is the hypotenuse of the triangle.

2. Isolate [tex]\(\overline{AB}\)[/tex]:

We start with the equation:
[tex]\[ \sin(25^\circ) = \frac{9}{\overline{AB}} \][/tex]

To solve for [tex]\(\overline{AB}\)[/tex], we multiply both sides by [tex]\(\overline{AB}\)[/tex] and then divide by [tex]\(\sin(25^\circ)\)[/tex]:
[tex]\[ \overline{AB} \sin(25^\circ) = 9 \][/tex]
[tex]\[ \overline{AB} = \frac{9}{\sin(25^\circ)} \][/tex]

3. Calculate [tex]\(\sin(25^\circ)\)[/tex]:

The sine of 25 degrees is a known trigonometric value which can be found using a calculator or trigonometric tables. In this case, we know from the result that:
[tex]\[ \sin(25^\circ) \approx 0.4226 \][/tex]

4. Solve for [tex]\(\overline{AB}\)[/tex]:

Plug in the value of [tex]\(\sin(25^\circ)\)[/tex]:
[tex]\[ \overline{AB} = \frac{9}{0.4226} \approx 21.295814248372487 \][/tex]

5. Round the Answer:

To get the final answer, we round 21.295814248372487 to the nearest tenth:
[tex]\[ \overline{AB} \approx 21.3 \][/tex]

Therefore, the length of [tex]\(\overline{AB}\)[/tex] is approximately 21.3 inches. The correct answer is:

[tex]\[ \boxed{21.3 \text{ in.}} \][/tex]