Solve for [tex]u[/tex], where [tex]u[/tex] is a real number.

[tex]-4+\sqrt{u+6}=6[/tex]

If there is more than one solution, separate them with commas. If there is no solution, select "No solution."

[tex]u=[/tex] [tex]$\square$[/tex]

[ ] No solution



Answer :

Sure, let's solve the equation step by step:

Given the equation:
[tex]\[ -4 + \sqrt{u + 6} = 6 \][/tex]

1. Isolate the square root term:
To isolate [tex]\(\sqrt{u + 6}\)[/tex], add 4 to both sides of the equation:
[tex]\[ -4 + \sqrt{u + 6} + 4 = 6 + 4 \][/tex]
Simplifying this, we get:
[tex]\[ \sqrt{u + 6} = 10 \][/tex]

2. Eliminate the square root:
Square both sides of the equation to get rid of the square root:
[tex]\[ (\sqrt{u + 6})^2 = 10^2 \][/tex]
Simplifying this, we have:
[tex]\[ u + 6 = 100 \][/tex]

3. Solve for [tex]\(u\)[/tex]:
Subtract 6 from both sides to solve for [tex]\(u\)[/tex]:
[tex]\[ u + 6 - 6 = 100 - 6 \][/tex]
Simplifying this, we get:
[tex]\[ u = 94 \][/tex]

Therefore, the solution to the equation [tex]\(-4 + \sqrt{u + 6} = 6\)[/tex] is:
[tex]\[ u = 94 \][/tex]