Two samples are taken with the following sample means, sizes, and standard deviations given below. Assume the populations are normal and the samples are independent.

[tex]\[
\begin{array}{ll}
\bar{x}_1=34 & \bar{x}_2=24 \\
n_1=65 & n_2=68 \\
s_1=2 & s_2=5
\end{array}
\][/tex]

Find a [tex]$94\%$[/tex] confidence interval. Round answers to the nearest hundredth.

[tex]\[
\square \ \textless \ \mu_1 - \mu_2 \ \textless \ \square
\][/tex]



Answer :

To find the 94% confidence interval for the difference between the two population means [tex]\((\mu_1 - \mu_2)\)[/tex], we will follow these steps:

1. Calculate the Standard Error (SE):
The standard error for the difference between two means is calculated using the formula:
[tex]\[ SE = \sqrt{\left(\frac{s_1^2}{n_1}\right) + \left(\frac{s_2^2}{n_2}\right)} \][/tex]
Given:
[tex]\[ \bar{x}_1 = 34, \quad \bar{x}_2 = 24 \][/tex]
[tex]\[ n_1 = 65, \quad n_2 = 68 \][/tex]
[tex]\[ s_1 = 2, \quad s_2 = 5 \][/tex]
Plugging these values into the formula:
[tex]\[ SE = \sqrt{\left(\frac{2^2}{65}\right) + \left(\frac{5^2}{68}\right)} = \sqrt{\left(\frac{4}{65}\right) + \left(\frac{25}{68}\right)} \approx 0.6551 \][/tex]

2. Determine the Critical Value (Z) for a 94% Confidence Level:
For a 94% confidence level, we look up the critical value (Z) from the standard normal distribution table. The critical value that corresponds to a confidence level of 94% is approximately 1.8808.

3. Calculate the Margin of Error (ME):
The margin of error is found by multiplying the critical value by the standard error:
[tex]\[ ME = Z \times SE \][/tex]
[tex]\[ ME = 1.8808 \times 0.6551 \approx 1.2322 \][/tex]

4. Construct the Confidence Interval:
The confidence interval for the difference between the two means is given by:
[tex]\[ (\bar{x}_1 - \bar{x}_2) \pm ME \][/tex]
Calculate the point estimate:
[tex]\[ \bar{x}_1 - \bar{x}_2 = 34 - 24 = 10 \][/tex]
Determine the lower and upper bounds of the confidence interval:
[tex]\[ \text{Lower bound} = 10 - 1.2322 \approx 8.77 \][/tex]
[tex]\[ \text{Upper bound} = 10 + 1.2322 \approx 11.23 \][/tex]

Thus, the 94% confidence interval for the difference between the population means [tex]\((\mu_1 - \mu_2)\)[/tex] is approximately:
[tex]\[ 8.77 < \mu_1 - \mu_2 < 11.23 \][/tex]