Copy and complete the table of values for [tex]y=5x[/tex].

\begin{tabular}{c|c|c|c|c}
[tex]$x$[/tex] & -1 & 0 & 1 & 2 \\
\hline
[tex]$y$[/tex] & A & B & C & D \\
\end{tabular}



Answer :

Sure! Let's find the values of [tex]\( y \)[/tex] for the given values of [tex]\( x \)[/tex] according to the equation [tex]\( y = 5x \)[/tex]. Here are the steps:

1. Substitute [tex]\( x = -1 \)[/tex] into the equation [tex]\( y = 5x \)[/tex]:
[tex]\[ y = 5(-1) = -5 \][/tex]
So, [tex]\( A = -5 \)[/tex].

2. Substitute [tex]\( x = 0 \)[/tex] into the equation [tex]\( y = 5x \)[/tex]:
[tex]\[ y = 5(0) = 0 \][/tex]
So, [tex]\( B = 0 \)[/tex].

3. Substitute [tex]\( x = 1 \)[/tex] into the equation [tex]\( y = 5x \)[/tex]:
[tex]\[ y = 5(1) = 5 \][/tex]
So, [tex]\( C = 5 \)[/tex].

4. Substitute [tex]\( x = 2 \)[/tex] into the equation [tex]\( y = 5x \)[/tex]:
[tex]\[ y = 5(2) = 10 \][/tex]
So, [tex]\( D = 10 \)[/tex].

Now we can complete the table as follows:
[tex]\[ \begin{tabular}{c|c|c|c|c} $x$ & -1 & 0 & 1 & 2 \\ \hline $y$ & -5 & 0 & 5 & 10 \\ \end{tabular} \][/tex]

Therefore, the completed table is:
[tex]\[ \begin{tabular}{c|c|c|c|c} $x$ & -1 & 0 & 1 & 2 \\ \hline $y$ & -5 & 0 & 5 & 10 \\ \end{tabular} \][/tex]