Select the correct answer.

Point [tex]R[/tex] divides [tex]\overline{EF}[/tex] in the ratio [tex]1:5[/tex]. If the coordinates of [tex]E[/tex] and [tex]F[/tex] are [tex](4, 8)[/tex] and [tex](11, 4)[/tex], respectively, what are the coordinates of [tex]R[/tex] to two decimal places?

A. [tex](4.66, 7.62)[/tex]

B. [tex](6, 6.86)[/tex]

C. [tex](5.17, 7.33)[/tex]

D. [tex](9.83, 4.67)[/tex]



Answer :

Certainly! To determine the coordinates of point [tex]\( R \)[/tex] that divides the segment [tex]\( \overline{EF} \)[/tex] in the ratio [tex]\( 1:5 \)[/tex], we can use the section formula. The section formula allows us to find a point that divides a line segment between two given points in a specified ratio.

The section formula in the case where point [tex]\( R \)[/tex] divides segment [tex]\( \overline{EF} \)[/tex] in the ratio [tex]\( m:n \)[/tex] is given by:
[tex]\[ R_x = \frac{m \cdot F_x + n \cdot E_x}{m + n} \][/tex]
[tex]\[ R_y = \frac{m \cdot F_y + n \cdot E_y}{m + n} \][/tex]

Here, the coordinates of [tex]\( E \)[/tex] are [tex]\( (4, 8) \)[/tex], and the coordinates of [tex]\( F \)[/tex] are [tex]\( (11, 4) \)[/tex]. The ratio [tex]\( m:n \)[/tex] is [tex]\( 1:5 \)[/tex].

Now, let's calculate the coordinates of [tex]\( R \)[/tex].

First, we find the [tex]\( x \)[/tex]-coordinate of [tex]\( R \)[/tex]:
[tex]\[ R_x = \frac{1 \cdot 11 + 5 \cdot 4}{1 + 5} \][/tex]
[tex]\[ R_x = \frac{11 + 20}{6} \][/tex]
[tex]\[ R_x = \frac{31}{6} \][/tex]
[tex]\[ R_x = 5.17 \text{ (rounded to two decimal places)} \][/tex]

Next, we find the [tex]\( y \)[/tex]-coordinate of [tex]\( R \)[/tex]:
[tex]\[ R_y = \frac{1 \cdot 4 + 5 \cdot 8}{1 + 5} \][/tex]
[tex]\[ R_y = \frac{4 + 40}{6} \][/tex]
[tex]\[ R_y = \frac{44}{6} \][/tex]
[tex]\[ R_y = 7.33 \text{ (rounded to two decimal places)} \][/tex]

So, the coordinates of point [tex]\( R \)[/tex] are [tex]\( (5.17, 7.33) \)[/tex].

Therefore, the correct answer is:
C. [tex]\( (5.17, 7.33) \)[/tex]