Drag the exponential expressions to the correct locations on the table. Not all exponential expressions will be used.

\begin{tabular}{|l|c|l|}
\hline Product & Expanded Form & Exponential Form \\
\hline [tex]$3^2 \cdot 3^3$[/tex] & [tex]$(3 \cdot 3) \cdot(3 \cdot 3 \cdot 3)$[/tex] & \\
\hline [tex]$5^1 \cdot 5^2$[/tex] & [tex]$(5) \cdot(5 \cdot 5)$[/tex] & \\
\hline [tex]$8^3 \cdot 8^4$[/tex] & [tex]$(8 \cdot 8 \cdot 8) \cdot(8 \cdot 8 \cdot 8 \cdot 8)$[/tex] & \\
\hline [tex]$7^6 \cdot 7^2$[/tex] & [tex]$(7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7) \cdot(7 \cdot 7)$[/tex] & \\
\hline
\end{tabular}



Answer :

Sure! Let's fill in the exponential forms for each product and expanded form in the table.

[tex]\[ \begin{tabular}{|l|c|l|} \hline Product & Expanded Form & Exponential Form \\ \hline $3^2 \cdot 3^3$ & $(3 \cdot 3) \cdot(3 \cdot 3 \cdot 3)$ & $3^5$ \\ \hline $5^1 \cdot 5^2$ & $(5) \cdot(5 \cdot 5)$ & $5^3$ \\ \hline $8^3 \cdot 8^4$ & $(8 \cdot 8 \cdot 8) \cdot(8 \cdot 8 \cdot 8 \cdot 8)$ & $8^7$ \\ \hline $7^6 \cdot 7^2$ & $(7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7) \cdot(7 \cdot 7)$ & $7^8$ \\ \hline \end{tabular} \][/tex]

Here's the detailed breakdown for each expression:

1. For [tex]\(3^2 \cdot 3^3\)[/tex]:
- Expanded form: [tex]\((3 \cdot 3) \cdot(3 \cdot 3 \cdot 3)\)[/tex]
- Exponential form: [tex]\(3^5\)[/tex]

2. For [tex]\(5^1 \cdot 5^2\)[/tex]:
- Expanded form: [tex]\((5) \cdot(5 \cdot 5)\)[/tex]
- Exponential form: [tex]\(5^3\)[/tex]

3. For [tex]\(8^3 \cdot 8^4\)[/tex]:
- Expanded form: [tex]\((8 \cdot 8 \cdot 8) \cdot(8 \cdot 8 \cdot 8 \cdot 8)\)[/tex]
- Exponential form: [tex]\(8^7\)[/tex]

4. For [tex]\(7^6 \cdot 7^2\)[/tex]:
- Expanded form: [tex]\((7 \cdot 7 \cdot 7 \cdot 7 \cdot 7 \cdot 7) \cdot(7 \cdot 7)\)[/tex]
- Exponential form: [tex]\(7^8\)[/tex]

The table is now correctly filled with the exponential expressions for each product and expanded form.