Fill in the missing values to make the equations true.

(a) [tex]\log _3 2+\log _3 7=\log _3 14[/tex]

(b) [tex]\log _2 5-\log _2 \square=\log _2 \frac{5}{3}[/tex]

(c) [tex]\log _6 \frac{1}{32}=-5 \log _6 \square[/tex]



Answer :

Sure, let's go through each equation step-by-step.

---

### Part (a)

Given equation:
[tex]\[ \log_3 2 + \log_3 7 = \log_3 \text{!} \][/tex]

Using the properties of logarithms, specifically the addition property which states [tex]\( \log_b(a) + \log_b(c) = \log_b(ac) \)[/tex]:

[tex]\[ \log_3 2 + \log_3 7 = \log_3 (2 \times 7) \][/tex]

So:
[tex]\[ \log_3 2 + \log_3 7 = \log_3 14 \][/tex]

Thus, the missing value is 14:
[tex]\[ \boxed{14} \][/tex]

---

### Part (b)

Given equation:
[tex]\[ \log_2 5 - \log_2 \square = \log_2 \frac{5}{3} \][/tex]

Using the properties of logarithms, specifically the subtraction property which states [tex]\( \log_b(a) - \log_b(c) = \log_b\left(\frac{a}{c}\right) \)[/tex]:

[tex]\[ \log_2 5 - \log_2 \text{!} = \log_2 \left(\frac{5}{x}\right) \][/tex]

For the equation to hold true as given:
[tex]\[ \log_2 5 - \log_2 x = \log_2 \frac{5}{3} \][/tex]

It must be that:
[tex]\[ x = 3 \][/tex]

Thus, the missing value is 3:
[tex]\[ \boxed{3} \][/tex]

---

### Part (c)

Given equation:
[tex]\[ \log_6 \frac{1}{32} = -5 \log_6 \square \][/tex]

Using the properties of logarithms, specifically the power rule which states [tex]\( \log_b(a^c) = c \log_b(a) \)[/tex]:

[tex]\[ \log_6 \frac{1}{32} = -5 \log_6 x \][/tex]

We can rewrite the right-hand side:
[tex]\[ \log_6 \frac{1}{32} = \log_6 (x^{-5}) \][/tex]

For the equation to hold true, we need:
[tex]\[ x^{-5} = \frac{1}{32} \][/tex]

Taking the reciprocal and solving for [tex]\( x \)[/tex]:
[tex]\[ x^5 = 32 \][/tex]

So:
[tex]\[ x = 2 \][/tex]

Thus, the missing value is 2:
[tex]\[ \boxed{2} \][/tex]

---

Therefore, the missing values are:
(a) 14
(b) 3
(c) 2