Gas Laws Fact Sheet

\begin{tabular}{|l|l|}
\hline Ideal gas law & [tex]$P V=n R T$[/tex] \\
\hline Ideal gas constant & [tex]$R=8.314 \frac{ L \cdot kPa }{ mol \cdot K }$[/tex] \\
& or \\
[tex]$R=0.0821 \frac{ L \cdot atm }{ mol \cdot K }$[/tex] \\
\hline Standard atmospheric pressure & [tex]$1 atm=101.3 kPa$[/tex] \\
\hline Celsius to Kelvin conversion & [tex]$K = { }^{\circ} C + 273.15$[/tex] \\
\hline
\end{tabular}

Type the correct answer in the box. Express your answer to three significant figures.

Air is a mixture of many gases. A 25 L jar of air contains 0.0104 mole of argon at a temperature of 273 K. What is the partial pressure of argon in the jar?

The partial pressure of argon in the jar is [tex]$\square$[/tex] kilopascal.



Answer :

To find the partial pressure of argon in the jar, we can use the Ideal Gas Law, which is stated as:

[tex]\[ PV = nRT \][/tex]

Where:
- [tex]\( P \)[/tex] is the pressure of the gas,
- [tex]\( V \)[/tex] is the volume of the gas,
- [tex]\( n \)[/tex] is the number of moles of the gas,
- [tex]\( R \)[/tex] is the ideal gas constant,
- [tex]\( T \)[/tex] is the temperature in Kelvin.

Given:
- Volume [tex]\( V = 25 \)[/tex] liters
- Number of moles of argon [tex]\( n = 0.0104 \)[/tex] moles
- Temperature [tex]\( T = 273 \)[/tex] Kelvin
- Ideal gas constant [tex]\( R = 8.314 \, \frac{L \cdot kPa}{mol \cdot K} \)[/tex]

We need to solve for the pressure [tex]\( P \)[/tex]. Rearranging the ideal gas law equation to solve for [tex]\( P \)[/tex]:

[tex]\[ P = \frac{nRT}{V} \][/tex]

Substituting the given values into the equation:

[tex]\[ P = \frac{(0.0104 \, \text{mol}) \times (8.314 \, \frac{L \cdot kPa}{mol \cdot K}) \times (273 \, \text{K})}{25 \, \text{L}} \][/tex]

[tex]\[ P = \frac{23.6202432 \, L \cdot kPa}{25 \, L} \][/tex]

[tex]\[ P = 0.944204352 \, kPa \][/tex]

Expressing the answer to three significant figures:

[tex]\[ P = 0.944 \, kPa \][/tex]

Therefore, the partial pressure of argon in the jar is [tex]\( \boxed{0.944} \)[/tex] kilopascal.