Express the formula [tex]P = 2l + 2w[/tex] in terms of the width, [tex]w[/tex]. Use the formula to find the width when the perimeter is 70 and the length is 22.

A. [tex]w = \frac{P - l}{2} ; w = 24[/tex]

B. [tex]w = \frac{P}{2} - l ; w = 13[/tex]

C. [tex]w = \frac{P - 2u}{2} ; w = 9[/tex]

D. [tex]w = P - 2l ; w = 26[/tex]



Answer :

Certainly! Let's derive a formula for the width [tex]\( w \)[/tex] in terms of the perimeter [tex]\( P \)[/tex] and the length [tex]\( l \)[/tex] given the expression [tex]\( P = 2l + 2w \)[/tex].

1. Start with the perimeter formula:

[tex]\[ P = 2l + 2w \][/tex]

2. Isolate the terms involving width:

Subtract [tex]\( 2l \)[/tex] from both sides:

[tex]\[ P - 2l = 2w \][/tex]

3. Solve for width [tex]\( w \)[/tex]:

Divide both sides by 2:

[tex]\[ w = \frac{P - 2l}{2} \][/tex]

Now, using the perimeter [tex]\( P = 70 \)[/tex] and the length [tex]\( l = 22 \)[/tex], we can find the width using the derived formula.

[tex]\[ w = \frac{70 - 2 \cdot 22}{2} \][/tex]

Calculate the expression step-by-step:

1. Evaluate the multiplication inside the parentheses:

[tex]\[ 2 \cdot 22 = 44 \][/tex]

2. Subtract this value from the perimeter:

[tex]\[ 70 - 44 = 26 \][/tex]

3. Finally, divide by 2:

[tex]\[ \frac{26}{2} = 13 \][/tex]

Thus, the width [tex]\( w \)[/tex] is 13.

Let's cross-check this with the given options:

- [tex]\( w = \frac{P - l}{2} \)[/tex]

Substituting [tex]\( P = 70 \)[/tex] and [tex]\( l = 22 \)[/tex]:

[tex]\[ w = \frac{70 - 22}{2} = \frac{48}{2} = 24 \][/tex]

This is incorrect.

- [tex]\( w = \frac{P}{2} - l \)[/tex]

Substituting [tex]\( P = 70 \)[/tex] and [tex]\( l = 22 \)[/tex]:

[tex]\[ w = \frac{70}{2} - 22 = 35 - 22 = 13 \][/tex]

This is correct!

- [tex]\( w = \frac{P - 2l}{2} \)[/tex]

Substituting [tex]\( P = 70 \)[/tex] and [tex]\( l = 22 \)[/tex]:

[tex]\[ w = \frac{70 - 2 \cdot 22}{2} = \frac{70 - 44}{2} = \frac{26}{2} = 13 \][/tex]

This is also correct but not given in the same form as our derived formula.

- [tex]\( w = P - 2l \)[/tex]

Substituting [tex]\( P = 70 \)[/tex] and [tex]\( l = 22 \)[/tex]:

[tex]\[ w = 70 - 2 \cdot 22 = 70 - 44 = 26 \][/tex]

This is incorrect.

Based on the evaluation, the correct formula and corresponding value are:

[tex]\[ w = \frac{P}{2} - l \quad \Rightarrow \quad w = 13 \][/tex]