A music theorist associates the fundamental frequency of a pitch [tex]\( f \)[/tex] with a real number defined by

[tex]\[ p = 60 + 12 \log_2\left(\frac{f}{440}\right) \][/tex]

Complete parts a and b below.

a. Standard concert pitch for an A is 440 cycles per second. Find the associated value of [tex]\( p \)[/tex].

[tex]\[ p = \square \][/tex]

(Round to the nearest whole number as needed.)



Answer :

To determine the value of [tex]\( p \)[/tex] for the standard concert pitch, which is 440 cycles per second, we need to use the provided formula for [tex]\( p \)[/tex]:

[tex]\[ p = 60 + 12 \log_2\left(\frac{f}{440}\right) \][/tex]

Let's go through the steps necessary to find [tex]\( p \)[/tex]:

1. Identify the given frequency (f):
The given frequency [tex]\( f \)[/tex] is 440 cps (cycles per second).

2. Substitute the frequency value into the formula:
We substitute [tex]\( f = 440 \)[/tex] into the formula:
[tex]\[ p = 60 + 12 \log_2\left(\frac{440}{440}\right) \][/tex]

3. Simplify the fraction inside the logarithm:
[tex]\[ p = 60 + 12 \log_2(1) \][/tex]

4. Evaluate the logarithm: [tex]\( \log_2(1) \)[/tex]:
We know that [tex]\( \log_2(1) = 0 \)[/tex], because any number to the power of 0 equals 1.

5. Calculate the value of [tex]\( p \)[/tex]:
[tex]\[ p = 60 + 12 \cdot 0 \][/tex]
[tex]\[ p = 60 \][/tex]

6. Rounding the value (if needed):
The final value of [tex]\( p \)[/tex] is already an integer, so no rounding is required.

Therefore, the associated value of [tex]\( p \)[/tex] for the standard concert pitch (440 cps) is:

[tex]\[ p = 60 \][/tex]