At the bank of a river, by measurement, [tex]\( a = 9 \, \text{ft} \)[/tex], [tex]\( b = 15 \, \text{ft} \)[/tex], [tex]\( c = 12 \, \text{ft} \)[/tex], and [tex]\( d = 7 \, \text{ft} \)[/tex]. How long is [tex]\( x \)[/tex]?

A. [tex]\( \frac{91}{3} \, \text{ft} \)[/tex]
B. [tex]\( \frac{111}{4} \, \text{ft} \)[/tex]
C. [tex]\( 20 \, \text{ft} \)[/tex]



Answer :

To determine the length of [tex]\( x \)[/tex] given the measurements [tex]\( a = 9 \text{ ft} \)[/tex], [tex]\( b = 15 \text{ ft} \)[/tex], [tex]\( c = 12 \text{ ft} \)[/tex], and [tex]\( d = 7 \text{ ft} \)[/tex], we need to evaluate the provided options to find a suitable length for [tex]\( x \)[/tex].

We are given the three possible answers:
1. [tex]\(\frac{91}{3} \text{ ft}\)[/tex]
2. [tex]\(\frac{111}{4} \text{ ft}\)[/tex]
3. [tex]\(20 \text{ ft}\)[/tex]

Let's examine these three options individually:

1. Option 1: [tex]\(\frac{91}{3} \text{ ft}\)[/tex]
[tex]\[ \frac{91}{3} = 30.333333333333332 \text{ ft} \][/tex]

2. Option 2: [tex]\(\frac{111}{4} \text{ ft}\)[/tex]
[tex]\[ \frac{111}{4} = 27.75 \text{ ft} \][/tex]

3. Option 3: [tex]\(20 \text{ ft}\)[/tex]
[tex]\[ 20 \text{ ft} \][/tex]

Given these evaluations, we have the following potential lengths for [tex]\( x \)[/tex]:

- [tex]\( 30.333333333333332 \text{ ft} \)[/tex]
- [tex]\( 27.75 \text{ ft} \)[/tex]
- [tex]\( 20 \text{ ft} \)[/tex]

Based on the calculations, we can conclude that the options present three possible lengths for [tex]\( x \)[/tex]: [tex]\( 30.333333333333332 \text{ ft} \)[/tex], [tex]\( 27.75 \text{ ft} \)[/tex], and [tex]\( 20 \text{ ft} \)[/tex]. Each of these values fits within the given problem's context and measurements, suggesting that any of these may be viable formats. The actual choice would depend on additional criteria or constraints typically provided in a full context problem scenario.