Answer :

To simplify the expression

[tex]\[ \frac{6}{b+1} + \frac{3}{b+9} \][/tex]

we need to combine these two rational expressions into one by finding a common denominator.

1. Identify the common denominator: The common denominator of [tex]\(b+1\)[/tex] and [tex]\(b+9\)[/tex] is [tex]\((b+1)(b+9)\)[/tex].

2. Rewrite each fraction with the common denominator:

[tex]\[ \frac{6}{b+1} = \frac{6(b+9)}{(b+1)(b+9)} \][/tex]

[tex]\[ \frac{3}{b+9} = \frac{3(b+1)}{(b+1)(b+9)} \][/tex]

3. Combine the fractions:

[tex]\[ \frac{6(b+9)}{(b+1)(b+9)} + \frac{3(b+1)}{(b+1)(b+9)} \][/tex]

4. Simplify the numerator:

[tex]\[ \frac{6(b+9) + 3(b+1)}{(b+1)(b+9)} \][/tex]

Expand the terms in the numerator:

[tex]\[ 6(b+9) = 6b + 54 \][/tex]

[tex]\[ 3(b+1) = 3b + 3 \][/tex]

Add these together:

[tex]\[ 6b + 54 + 3b + 3 = 9b + 57 \][/tex]

5. Combine the numerator over the common denominator:

[tex]\[ \frac{9b + 57}{(b+1)(b+9)} \][/tex]

6. Factor out the greatest common factor in the numerator, which is 3:

[tex]\[ 9b + 57 = 3(3b + 19) \][/tex]

7. Write the final simplified expression:

[tex]\[ \frac{3(3b + 19)}{(b+1)(b+9)} \][/tex]

So, the completely factored and simplified form of the expression

[tex]\[ \frac{6}{b+1} + \frac{3}{b+9} \][/tex]

is

[tex]\[ \frac{3(3b + 19)}{(b+1)(b+9)} \][/tex]