An arch for a bridge over a highway is in the form of a semiellipse. The top of the arch is 35 feet above ground (the major axis). What should the span of the bridge be (the length of its minor axis) if the height 26 feet from the center is to be 16 feet above ground? Round to two decimal places.

A. 47.80 ft
B. 58.47 ft
C. 113.75 ft
D. 29.23 ft



Answer :

To solve this problem, we need to determine the span of a semiellipse-shaped arch given specific dimensions.

### Given:
1. The height of the arch at the center (major axis length, 2a) is 35 feet. Hence, the semi-major axis [tex]\( a \)[/tex] is:
[tex]\[ a = \frac{35}{2} = 35 \text{ feet} \][/tex]
2. The height of the arch at a point 26 feet away from the center (minor axis length, 2b) is 16 feet above ground.
3. The distance from the center where the height is measured is 26 feet.

### Step-by-Step Solution:

#### Step 1: Understanding the ellipse formula
For an ellipse, the equation is:
[tex]\[ \frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \][/tex]
where [tex]\( x \)[/tex] and [tex]\( y \)[/tex] are the coordinates of any point on the ellipse, [tex]\( a \)[/tex] is the semi-major axis, and [tex]\( b \)[/tex] is the semi-minor axis.

#### Step 2: Rearrange the equation to solve for [tex]\( b^2 \)[/tex]
We have:
[tex]\[ x = 26 \text{ feet} \][/tex]
[tex]\[ y = 16 \text{ feet} \][/tex]
[tex]\[ a = 35 \text{ feet} \][/tex]

Plug these into the ellipse equation and solve for [tex]\( b^2 \)[/tex]:
[tex]\[ \frac{26^2}{b^2} + \frac{16^2}{35^2} = 1 \][/tex]
[tex]\[ \frac{676}{b^2} + \frac{256}{1225} = 1 \][/tex]
[tex]\[ \frac{676}{b^2} + 0.2093877551 = 1 \][/tex]
[tex]\[ \frac{676}{b^2} = 1 - 0.2093877551 \][/tex]
[tex]\[ \frac{676}{b^2} = 0.7906122449 \][/tex]
[tex]\[ b^2 = \frac{676}{0.7906122449} \][/tex]
[tex]\[ b^2 \approx 854.5923633 \][/tex]

#### Step 3: Calculate [tex]\( b \)[/tex] (semi-minor axis)
[tex]\[ b = \sqrt{854.5923633} \][/tex]
[tex]\[ b \approx 29.2334118 \text{ feet} \][/tex]

#### Step 4: Determine the span of the bridge
The span of the bridge is the full length of the minor axis, or [tex]\( 2b \)[/tex]:
[tex]\[ \text{Span} = 2b \][/tex]
[tex]\[ \text{Span} = 2 \times 29.2334118 \][/tex]
[tex]\[ \text{Span} \approx 58.4668235 \text{ feet} \][/tex]

Finally, rounding to two decimal places:
[tex]\[ \text{Span} \approx 58.47 \text{ feet} \][/tex]

Therefore, the span of the bridge should be approximately 58.47 feet.

Thus, the correct answer is:
[tex]\[ \boxed{58.47 \text{ ft}} \][/tex]