To find the number of U.S. travelers to other countries in 1990 using the given polynomial function [tex]\( P(x) = -0.00880x^3 + 0.1467x^2 + 1.286x + 42.87 \)[/tex], we need to determine [tex]\( P(x) \)[/tex] when [tex]\( x = 0 \)[/tex].
Since [tex]\( x = 0 \)[/tex] represents the year 1990, we can substitute [tex]\( x = 0 \)[/tex] into the polynomial:
[tex]\[ P(0) = -0.00880(0)^3 + 0.1467(0)^2 + 1.286(0) + 42.87 \][/tex]
From the terms involving [tex]\( x \)[/tex]:
- [tex]\(-0.00880(0)^3 = 0\)[/tex]
- [tex]\(0.1467(0)^2 = 0\)[/tex]
- [tex]\(1.286(0) = 0\)[/tex]
So, we have:
[tex]\[ P(0) = 0 + 0 + 0 + 42.87 \][/tex]
[tex]\[ P(0) = 42.87 \][/tex]
Therefore, the number of U.S. travelers to other countries in 1990 was approximately [tex]\( 42.87 \)[/tex] million.