Does the following data represent a function?

\begin{tabular}{c|rrr}
[tex]$x$[/tex] & -1 & 8 & 9 \\
\hline
[tex]$y$[/tex] & 0 & 3 & 9
\end{tabular}

A. Yes
B. No



Answer :

To determine if the given data represents a function, we need to verify if each element in the domain (set of x-values) maps to exactly one element in the range (set of y-values). In simpler terms, each input must have a unique output.

Let's go through the data step-by-step:

1. List the pairs:
We have the following pairs of [tex]\( (x, y) \)[/tex]:
- [tex]\( (-1, 0) \)[/tex]
- [tex]\( (8, 3) \)[/tex]
- [tex]\( (9, 9) \)[/tex]

2. Check for unique mappings:
- The x-value [tex]\(-1\)[/tex] maps to the y-value [tex]\(0\)[/tex].
- The x-value [tex]\(8\)[/tex] maps to the y-value [tex]\(3\)[/tex].
- The x-value [tex]\(9\)[/tex] maps to the y-value [tex]\(9\)[/tex].

3. Verify unique x-values:
- The x-value [tex]\(-1\)[/tex] is unique in the domain.
- The x-value [tex]\(8\)[/tex] is unique in the domain.
- The x-value [tex]\(9\)[/tex] is unique in the domain.

Since each x-value maps to exactly one unique y-value and there are no repeated x-values with different y-values, this mapping satisfies the definition of a function.

Therefore, the given data represents a function.

Answer: Yes