Solve: [tex]x^4 + 3x^3 - 27x = 81[/tex]

Choose:

A. [tex]\pm 3 ; \pm 9[/tex]

B. [tex]\pm 3 ; \frac{-3 \pm 3i \sqrt{3}}{2}[/tex]

C. [tex]\pm 3 ; \pm 9\sqrt{3}[/tex]

D. [tex]\pm 3 ; \frac{-27}{2} \pm 27 \sqrt{3}[/tex]



Answer :

To solve the equation [tex]\( x^4 + 3x^3 - 27x = 81 \)[/tex], we first write it in standard form:

[tex]\[ x^4 + 3x^3 - 27x - 81 = 0 \][/tex]

Now, we need to factor or find the roots of this polynomial equation. In this case, the equation has the following roots:

1. [tex]\( x = -3 \)[/tex]
2. [tex]\( x = 3 \)[/tex]
3. [tex]\( x = \frac{-3}{2} - \frac{3\sqrt{3}i}{2} \)[/tex]
4. [tex]\( x = \frac{-3}{2} + \frac{3\sqrt{3}i}{2} \)[/tex]

Let's verify these solutions:
1. Substituting [tex]\( x = -3 \)[/tex] into the equation:
[tex]\[ (-3)^4 + 3(-3)^3 - 27(-3) - 81 = 81 - 81 = 0 \][/tex]
This solution is correct.

2. Substituting [tex]\( x = 3 \)[/tex] into the equation:
[tex]\[ 3^4 + 3(3^3) - 27 \cdot 3 - 81 = 81 - 81 = 0 \][/tex]
This solution is correct.

3. Substituting [tex]\( x = \frac{-3}{2} - \frac{3\sqrt{3}i}{2} \)[/tex] into the equation:
Confirming through algebraic or numerical simplification shows it satisfies the polynomial equation.

4. Substituting [tex]\( x = \frac{-3}{2} + \frac{3\sqrt{3}i}{2} \)[/tex] into the equation:
Confirming through algebraic or numerical simplification shows it satisfies the polynomial equation.

Hence, the roots of the equation:

[tex]\[ x^4 + 3x^3 - 27x - 81 = 0 \][/tex]

are [tex]\(\pm 3\)[/tex] and [tex]\(\frac{-3 \pm 3i\sqrt{3}}{2}\)[/tex].

Therefore, the correct choice is:
[tex]\[ \pm 3; \frac{-3 \pm 3i \sqrt{3}}{2} \][/tex]