What is the area of a right triangle with a height of [tex]$17 \frac{1}{2}$[/tex] meters and a base of 40 meters?

A. [tex]$28 \frac{3}{4} \, m^2$[/tex]
B. [tex][tex]$57 \frac{1}{2} \, m^2$[/tex][/tex]
C. [tex]$350 \, m^2$[/tex]
D. [tex]$700 \, m^2$[/tex]



Answer :

To determine the area of a right triangle, you can use the formula:

[tex]\[ \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \][/tex]

Given:
- The height of the triangle is [tex]\( 17 \frac{1}{2} \)[/tex] meters
- The base of the triangle is 40 meters

First, convert the mixed number to an improper fraction or a decimal:
[tex]\[ 17 \frac{1}{2} = 17.5 \text{ meters} \][/tex]

Now, apply the formula for the area of the right triangle:

1. Plug in the given values:
[tex]\[ \text{Area} = \frac{1}{2} \times 40 \times 17.5 \][/tex]

2. Perform the multiplication inside the parentheses first:
[tex]\[ 40 \times 17.5 = 700 \][/tex]

3. Multiply by [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[ \frac{1}{2} \times 700 = 350 \][/tex]

Therefore, the area of the right triangle is:
[tex]\[ 350 \, \text{m}^2 \][/tex]

Among the given multiple choice options, the correct answer is:
[tex]\[ 350 \, \text{m}^2 \][/tex]