Answer :
To evaluate the expression [tex]\(\left(\frac{2^2 x^2}{x y^2}\right)^2\)[/tex] for [tex]\(x = 3\)[/tex] and [tex]\(y = 2\)[/tex], follow these steps:
1. Substitute [tex]\(x = 3\)[/tex] and [tex]\(y = 2\)[/tex] into the expression:
[tex]\[ \left(\frac{2^2 \cdot 3^2}{3 \cdot 2^2}\right)^2 \][/tex]
2. Calculate [tex]\(2^2\)[/tex]:
[tex]\[ 2^2 = 4 \][/tex]
3. Calculate [tex]\(3^2\)[/tex]:
[tex]\[ 3^2 = 9 \][/tex]
4. Substitute these values back into the expression:
[tex]\[ \left(\frac{4 \cdot 9}{3 \cdot 4}\right)^2 \][/tex]
5. Simplify the numerator of the fraction:
[tex]\[ 4 \cdot 9 = 36 \][/tex]
6. Simplify the denominator of the fraction:
[tex]\[ 3 \cdot 4 = 12 \][/tex]
7. Simplify the fraction [tex]\(\frac{36}{12}\)[/tex]:
[tex]\[ \frac{36}{12} = 3 \][/tex]
8. Now, raise the simplified result to the power of 2:
[tex]\[ 3^2 = 9 \][/tex]
Therefore, the solution is [tex]\(9\)[/tex].
1. Substitute [tex]\(x = 3\)[/tex] and [tex]\(y = 2\)[/tex] into the expression:
[tex]\[ \left(\frac{2^2 \cdot 3^2}{3 \cdot 2^2}\right)^2 \][/tex]
2. Calculate [tex]\(2^2\)[/tex]:
[tex]\[ 2^2 = 4 \][/tex]
3. Calculate [tex]\(3^2\)[/tex]:
[tex]\[ 3^2 = 9 \][/tex]
4. Substitute these values back into the expression:
[tex]\[ \left(\frac{4 \cdot 9}{3 \cdot 4}\right)^2 \][/tex]
5. Simplify the numerator of the fraction:
[tex]\[ 4 \cdot 9 = 36 \][/tex]
6. Simplify the denominator of the fraction:
[tex]\[ 3 \cdot 4 = 12 \][/tex]
7. Simplify the fraction [tex]\(\frac{36}{12}\)[/tex]:
[tex]\[ \frac{36}{12} = 3 \][/tex]
8. Now, raise the simplified result to the power of 2:
[tex]\[ 3^2 = 9 \][/tex]
Therefore, the solution is [tex]\(9\)[/tex].