A cylinder's radius is reduced to [tex]\frac{2}{5}[/tex] its original size and the height is quadrupled. How has the volume of the cylinder changed?

A. The volume is now [tex]\frac{8}{25}[/tex] the original volume.
B. The volume is now [tex]\frac{16}{25}[/tex] the original volume.
C. The volume is now [tex]\frac{64}{25}[/tex] the original volume.
D. The volume is now [tex]\frac{16}{5}[/tex] the original volume.

Please select the best answer from the choices provided.



Answer :

Let's start by reviewing the volume formula for a cylinder. The volume [tex]\( V \)[/tex] of a cylinder with radius [tex]\( r \)[/tex] and height [tex]\( h \)[/tex] is given by:

[tex]\[ V = \pi r^2 h \][/tex]

Now, let's analyze the changes:

1. The radius [tex]\( r \)[/tex] is reduced to [tex]\(\frac{2}{5}\)[/tex] of its original size.
So, the new radius [tex]\( r' \)[/tex] is:
[tex]\[ r' = \frac{2}{5} r \][/tex]

2. The height [tex]\( h \)[/tex] is quadrupled.
So, the new height [tex]\( h' \)[/tex] is:
[tex]\[ h' = 4h \][/tex]

We now want to determine the new volume [tex]\( V' \)[/tex] of the cylinder with the new dimensions. Using the new radius [tex]\( r' \)[/tex] and new height [tex]\( h' \)[/tex], the volume [tex]\( V' \)[/tex] is:

[tex]\[ V' = \pi (r')^2 h' \][/tex]

Substitute [tex]\( r' = \frac{2}{5} r \)[/tex] and [tex]\( h' = 4h \)[/tex]:

[tex]\[ V' = \pi \left( \frac{2}{5} r \right)^2 (4h) \][/tex]

First, square the new radius:

[tex]\[ \left( \frac{2}{5} r \right)^2 = \frac{4}{25} r^2 \][/tex]

Now, substitute this back into the volume formula:

[tex]\[ V' = \pi \left( \frac{4}{25} r^2 \right) (4h) \][/tex]

Distribute the [tex]\( 4h \)[/tex]:

[tex]\[ V' = \pi \left( \frac{4}{25} \right) \left( 4 r^2 h \right) \][/tex]

Simplify inside the parentheses:

[tex]\[ V' = \pi \left( \frac{16}{25} r^2 h \right) \][/tex]

Rewriting it:

[tex]\[ V' = \frac{16}{25} \pi r^2 h \][/tex]

Recall that [tex]\( \pi r^2 h \)[/tex] is just the original volume [tex]\( V \)[/tex]:

[tex]\[ V' = \frac{16}{25} V \][/tex]

Thus, the new volume of the cylinder is [tex]\(\frac{16}{25}\)[/tex] of the original volume. Therefore, the correct answer is:

B. The volume is now [tex]\(\frac{16}{25}\)[/tex] the original volume.