Write the equation [tex]$x^2 + 6x + y^2 - 8y = 19$[/tex] in standard form.

1. [tex]$(x + 3)^2 + (y - 4)^2 = 44$[/tex]
2. [tex][tex]$(x + 3)^2 + (y + 4)^2 = 44$[/tex][/tex]
3. [tex]$(x - 3)^2 + (y - 4)^2 = \sqrt{44}$[/tex]
4. [tex]$(x + 3)^2 + (y - 4)^2 = \sqrt{44}$[/tex]



Answer :

To write the equation [tex]\(x^2 + 6x + y^2 - 8y = 19\)[/tex] in standard form, which is typically the equation of a circle [tex]\((x - h)^2 + (y - k)^2 = r^2\)[/tex], we need to complete the square for both the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms.

1. Rewrite the equation grouping [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms:
[tex]\[ x^2 + 6x + y^2 - 8y = 19 \][/tex]

2. Complete the square for the [tex]\(x\)[/tex]-terms:

[tex]\[ x^2 + 6x \][/tex]
To complete the square:
- Take half of the coefficient of [tex]\(x\)[/tex], which is [tex]\(6\)[/tex], giving [tex]\(3\)[/tex].
- Square this value, [tex]\(3^2 = 9\)[/tex].
- Rewrite the [tex]\(x\)[/tex]-terms as:
[tex]\[ x^2 + 6x = (x + 3)^2 - 9 \][/tex]

3. Complete the square for the [tex]\(y\)[/tex]-terms:

[tex]\[ y^2 - 8y \][/tex]
To complete the square:
- Take half of the coefficient of [tex]\(y\)[/tex], which is [tex]\(-8\)[/tex], giving [tex]\(-4\)[/tex].
- Square this value, [tex]\((-4)^2 = 16\)[/tex].
- Rewrite the [tex]\(y\)[/tex]-terms as:
[tex]\[ y^2 - 8y = (y - 4)^2 - 16 \][/tex]

4. Substitute these completed squares back into the original equation:

[tex]\[ (x + 3)^2 - 9 + (y - 4)^2 - 16 = 19 \][/tex]

5. Combine the constants on the right side:

[tex]\[ (x + 3)^2 + (y - 4)^2 - 25 = 19 \][/tex]

6. Add 25 to both sides of the equation to isolate the completed squares:

[tex]\[ (x + 3)^2 + (y - 4)^2 = 44 \][/tex]

Thus, the equation [tex]\(x^2 + 6x + y^2 - 8y = 19\)[/tex] in standard form is:

[tex]\[ (x + 3)^2 + (y - 4)^2 = 44 \][/tex]

The correct answer is choice 1:
[tex]\[ (x + 3)^2 + (y - 4)^2 = 44 \][/tex]