\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-5 & 2 \\
\hline
0 & 7 \\
\hline
\end{tabular}

The table of ordered pairs shows the coordinates of two points on the graph of a line. Which equation describes the line?

A. [tex]$y = x + 7$[/tex]

B. [tex]$y = x - 7$[/tex]

C. [tex]$y = -5x + 2$[/tex]

D. [tex]$y = 5x + 2$[/tex]



Answer :

Certainly! To find the equation of a line passing through the points [tex]\((-5, 2)\)[/tex] and [tex]\((0, 7)\)[/tex], we can follow these steps:

1. Determine the slope ([tex]\(m\)[/tex]):
- The slope [tex]\(m\)[/tex] is calculated using the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the coordinates [tex]\((x_1, y_1) = (-5, 2)\)[/tex] and [tex]\((x_2, y_2) = (0, 7)\)[/tex], we get:
[tex]\[ m = \frac{7 - 2}{0 - (-5)} = \frac{5}{5} = 1 \][/tex]

2. Find the y-intercept ([tex]\(c\)[/tex]):
- The equation of the line in slope-intercept form is [tex]\(y = mx + c\)[/tex].
- We can use one of the given points to find [tex]\(c\)[/tex]. Let's use the point [tex]\((0, 7)\)[/tex]:
[tex]\[ y = mx + c \implies 7 = (1) \cdot 0 + c \implies c = 7 \][/tex]

3. Write the equation:
- Now we have the slope [tex]\(m = 1\)[/tex] and the y-intercept [tex]\(c = 7\)[/tex].
- The equation of the line is:
[tex]\[ y = 1 x + 7 \implies y = x + 7 \][/tex]

Therefore, the equation that describes the line is [tex]\( y = x + 7 \)[/tex], which corresponds to option (a).