Answer :
To find the missing probability, [tex]\( P(A \cup B) \)[/tex], we use the formula for the union of two events. The formula is:
[tex]\[ P(A \cup B) = P(A) + P(B) - P(A \cap B) \][/tex]
Given the probabilities:
[tex]\[ P(A) = \frac{7}{20} \][/tex]
[tex]\[ P(B) = \frac{3}{5} \][/tex]
[tex]\[ P(A \cap B) = \frac{21}{100} \][/tex]
Let's find the numerical values of these probabilities:
1. Converting the given fraction to a decimal, we find [tex]\( P(A) \)[/tex]:
[tex]\[ P(A) = \frac{7}{20} = 0.35 \][/tex]
2. Converting the given fraction to a decimal, we find [tex]\( P(B) \)[/tex]:
[tex]\[ P(B) = \frac{3}{5} = 0.60 \][/tex]
3. Converting the given fraction to a decimal, we find [tex]\( P(A \cap B) \)[/tex]:
[tex]\[ P(A \cap B) = \frac{21}{100} = 0.21 \][/tex]
Now, substitute these values into the formula:
[tex]\[ P(A \cup B) = 0.35 + 0.60 - 0.21 \][/tex]
Performing the addition and subtraction:
[tex]\[ P(A \cup B) = 0.95 - 0.21 = 0.74 \][/tex]
Convert the decimal result back to a fraction. Recall that:
[tex]\[ 0.74 = \frac{74}{100} = \frac{37}{50} \][/tex]
Thus, the missing probability is:
[tex]\[ P(A \cup B) = \frac{37}{50} \][/tex]
So, the correct answer is:
[tex]\[ D. \frac{37}{50} \][/tex]
[tex]\[ P(A \cup B) = P(A) + P(B) - P(A \cap B) \][/tex]
Given the probabilities:
[tex]\[ P(A) = \frac{7}{20} \][/tex]
[tex]\[ P(B) = \frac{3}{5} \][/tex]
[tex]\[ P(A \cap B) = \frac{21}{100} \][/tex]
Let's find the numerical values of these probabilities:
1. Converting the given fraction to a decimal, we find [tex]\( P(A) \)[/tex]:
[tex]\[ P(A) = \frac{7}{20} = 0.35 \][/tex]
2. Converting the given fraction to a decimal, we find [tex]\( P(B) \)[/tex]:
[tex]\[ P(B) = \frac{3}{5} = 0.60 \][/tex]
3. Converting the given fraction to a decimal, we find [tex]\( P(A \cap B) \)[/tex]:
[tex]\[ P(A \cap B) = \frac{21}{100} = 0.21 \][/tex]
Now, substitute these values into the formula:
[tex]\[ P(A \cup B) = 0.35 + 0.60 - 0.21 \][/tex]
Performing the addition and subtraction:
[tex]\[ P(A \cup B) = 0.95 - 0.21 = 0.74 \][/tex]
Convert the decimal result back to a fraction. Recall that:
[tex]\[ 0.74 = \frac{74}{100} = \frac{37}{50} \][/tex]
Thus, the missing probability is:
[tex]\[ P(A \cup B) = \frac{37}{50} \][/tex]
So, the correct answer is:
[tex]\[ D. \frac{37}{50} \][/tex]