Given the following reaction and standard enthalpies of formation:

[tex]\[
2 C \text{ (s, graphite)} + H_2 \rightarrow C_2H_2 \text{ (g)}
\][/tex]

Standard Enthalpies of Formation:

\begin{tabular}{|c|c|}
\hline
Substance & [tex]$\Delta H_f \text{ (kJ/mol)}$[/tex] \\
\hline
[tex]$C_2H_2 \text{ (g)}$[/tex] & 226.73 \\
\hline
[tex]$CaCO_3 \text{ (s)}$[/tex] & -1206.92 \\
\hline
[tex]$CaO \text{ (s)}$[/tex] & -635.09 \\
\hline
[tex]$CO \text{ (g)}$[/tex] & -110.525 \\
\hline
[tex]$CO_2 \text{ (g)}$[/tex] & -393.509 \\
\hline
[tex]$H_2O \text{ (l)}$[/tex] & -285.8 \\
\hline
[tex]$H_2O \text{ (g)}$[/tex] & -241.818 \\
\hline
[tex]$C \text{ (s, diamond)}$[/tex] & 1.895 \\
\hline
[tex]$C \text{ (s, graphite)}$[/tex] & 0.0 \\
\hline
\end{tabular}

Based on the equation and the information in the table, what is the enthalpy of the reaction?

Use the equation:

[tex]\[
\Delta H_{\text{reaction}} = \sum \left(\Delta H_{f, \text{products}}\right) - \sum \left(\Delta H_{f, \text{reactants}}\right)
\][/tex]



Answer :

To determine the enthalpy of the reaction given in the equation:

[tex]\[ 2 C (s, \text{graphite}) + H_2 (g) \rightarrow C_2H_2 (g) \][/tex]

we use the standard enthalpies of formation from the table given. The standard enthalpy of formation ([tex]\(\Delta H_f\)[/tex]) is the change in enthalpy when one mole of a compound is formed from its elements in their standard states.

From the table, we have:
- [tex]\(\Delta H_f \ \text{for} \ C_2 H_2 (g) = 226.73 \ \text{kJ/mol} \)[/tex]
- [tex]\(\Delta H_f \ \text{for} \ C (s, \text{graphite}) = 0.0 \ \text{kJ/mol} \)[/tex]
- [tex]\(\Delta H_f \ \text{for} \ H_2 (g) = 0.0 \ \text{kJ/mol} \)[/tex]

Using the given equation:
[tex]\[ \Delta H_{\text{reaction}} = \sum (\Delta H_{f, \text{products}}) - \sum (\Delta H_{f, \text{reactants}}) \][/tex]

First, we calculate the total enthalpy of the reactants:

For the reactants:
- The enthalpy contribution from [tex]\(C (s, \text{graphite})\)[/tex] is [tex]\(2 \times \Delta H_f (C (s, \text{graphite})) = 2 \times 0.0 \ \text{kJ/mol} = 0.0 \ \text{kJ}\)[/tex]
- The enthalpy contribution from [tex]\(H_2 (g)\)[/tex] is [tex]\(1 \times \Delta H_f (H_2 (g)) = 1 \times 0.0 \ \text{kJ/mol} = 0.0 \ \text{kJ}\)[/tex]

Total enthalpy of reactants:
[tex]\[ \Delta H_{\text{reactants}} = 0.0 \ \text{kJ} + 0.0 \ \text{kJ} = 0.0 \ \text{kJ} \][/tex]

Next, we calculate the total enthalpy of the products:

For the products:
- The enthalpy contribution from [tex]\(C_2 H_2 (g)\)[/tex] is [tex]\(1 \times \Delta H_f (C_2 H_2 (g)) = 1 \times 226.73 \ \text{kJ/mol} = 226.73 \ \text{kJ}\)[/tex]

Total enthalpy of products:
[tex]\[ \Delta H_{\text{products}} = 226.73 \ \text{kJ} \][/tex]

Finally, we calculate the enthalpy of the reaction:
[tex]\[ \Delta H_{\text{reaction}} = \Delta H_{\text{products}} - \Delta H_{\text{reactants}} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = 226.73 \ \text{kJ} - 0.0 \ \text{kJ} \][/tex]
[tex]\[ \Delta H_{\text{reaction}} = 226.73 \ \text{kJ} \][/tex]

Therefore, the enthalpy of the reaction ([tex]\(\Delta H_{\text{reaction}}\)[/tex]) is [tex]\(226.73 \ \text{kJ}\)[/tex].