Calculate the following expression:

[tex]\[ \left(3 \frac{3}{10} + 5 \frac{19}{20}\right) \cdot \left(\frac{3}{4} + \frac{7}{20}\right) \][/tex]



Answer :

Sure, let's solve the given problem step-by-step:

Given Expression:
[tex]\[ \left(3 \frac{3}{10} + 5 \frac{19}{20}\right) \cdot \left(\frac{3}{4} + \frac{7}{20}\right) \][/tex]

First, we need to convert the mixed fractions to improper fractions and then to decimals for simplicity.

1. Convert mixed fractions to improper fractions:

[tex]\[ 3 \frac{3}{10} = 3 + \frac{3}{10} = 3.3 \][/tex]

[tex]\[ 5 \frac{19}{20} = 5 + \frac{19}{20} = 5.95 \][/tex]

2. Convert the fractions to decimals:

[tex]\[ \frac{3}{4} = 0.75 \][/tex]

[tex]\[ \frac{7}{20} = 0.35 \][/tex]

3. Add the individual fractions:

Add the converted mixed fractions:
[tex]\[ 3.3 + 5.95 = 9.25 \][/tex]

Add the simple fractions:
[tex]\[ 0.75 + 0.35 = 1.1 \][/tex]

4. Multiply the sums of the fractions:

[tex]\[ 9.25 \times 1.1 \][/tex]

5. Multiply the results:
[tex]\[ 9.25 \times 1.1 = 10.175 \][/tex]

Therefore, the result of the given expression [tex]\(\left(3 \frac{3}{10} + 5 \frac{19}{20}\right) \cdot\left(\frac{3}{4}+\frac{7}{20}\right)\)[/tex] is:

[tex]\[ 10.175 \][/tex]