Answer :
To determine the enthalpy change for the reaction [tex]\( H_2(g) + Br_2(g) \rightarrow 2 HBr(g) \)[/tex], we will use the given standard enthalpies of formation.
First, recall that the standard enthalpy change for a chemical reaction [tex]\(\Delta H_{reaction}\)[/tex] can be calculated using the standard enthalpies of formation [tex]\( \Delta H_f \)[/tex] of the reactants and products:
[tex]\[ \Delta H_{reaction} = \sum \Delta H_f \text{(products)} - \sum \Delta H_f \text{(reactants)} \][/tex]
Given data from the table:
[tex]\[ \Delta H_f \text{(Br}_2(g)) = 30.907\ \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_f \text{(HBr(g))} = -36.4\ \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_f \text{(H}_2(g)) = 0.0\ \text{kJ/mol} \][/tex]
The balanced chemical equation is:
[tex]\[ H_2(g) + Br_2(g) \rightarrow 2 HBr(g) \][/tex]
Now, let's calculate the total enthalpy of the products:
[tex]\[ \text{Total enthalpy of products} = 2 \times \Delta H_f \text{(HBr(g))} \][/tex]
[tex]\[ = 2 \times -36.4\ \text{kJ/mol} \][/tex]
[tex]\[ = -72.8\ \text{kJ/mol} \][/tex]
Next, we calculate the total enthalpy of the reactants:
[tex]\[ \text{Total enthalpy of reactants} = \Delta H_f \text{(H}_2(g)) + \Delta H_f \text{(Br}_2(g)) \][/tex]
[tex]\[ = 0.0\ \text{kJ/mol} + 30.907\ \text{kJ/mol} \][/tex]
[tex]\[ = 30.907\ \text{kJ/mol} \][/tex]
Finally, we calculate the overall enthalpy change for the reaction:
[tex]\[ \Delta H_{reaction} = \text{Total enthalpy of products} - \text{Total enthalpy of reactants} \][/tex]
[tex]\[ = -72.8\ \text{kJ/mol} - 30.907\ \text{kJ/mol} \][/tex]
[tex]\[ = -103.707\ \text{kJ/mol} \][/tex]
Therefore, the enthalpy change for the reaction [tex]\( H_2(g) + Br_2(g) \rightarrow 2 HBr(g) \)[/tex] is [tex]\(-103.707\ \text{kJ/mol}\)[/tex].
First, recall that the standard enthalpy change for a chemical reaction [tex]\(\Delta H_{reaction}\)[/tex] can be calculated using the standard enthalpies of formation [tex]\( \Delta H_f \)[/tex] of the reactants and products:
[tex]\[ \Delta H_{reaction} = \sum \Delta H_f \text{(products)} - \sum \Delta H_f \text{(reactants)} \][/tex]
Given data from the table:
[tex]\[ \Delta H_f \text{(Br}_2(g)) = 30.907\ \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_f \text{(HBr(g))} = -36.4\ \text{kJ/mol} \][/tex]
[tex]\[ \Delta H_f \text{(H}_2(g)) = 0.0\ \text{kJ/mol} \][/tex]
The balanced chemical equation is:
[tex]\[ H_2(g) + Br_2(g) \rightarrow 2 HBr(g) \][/tex]
Now, let's calculate the total enthalpy of the products:
[tex]\[ \text{Total enthalpy of products} = 2 \times \Delta H_f \text{(HBr(g))} \][/tex]
[tex]\[ = 2 \times -36.4\ \text{kJ/mol} \][/tex]
[tex]\[ = -72.8\ \text{kJ/mol} \][/tex]
Next, we calculate the total enthalpy of the reactants:
[tex]\[ \text{Total enthalpy of reactants} = \Delta H_f \text{(H}_2(g)) + \Delta H_f \text{(Br}_2(g)) \][/tex]
[tex]\[ = 0.0\ \text{kJ/mol} + 30.907\ \text{kJ/mol} \][/tex]
[tex]\[ = 30.907\ \text{kJ/mol} \][/tex]
Finally, we calculate the overall enthalpy change for the reaction:
[tex]\[ \Delta H_{reaction} = \text{Total enthalpy of products} - \text{Total enthalpy of reactants} \][/tex]
[tex]\[ = -72.8\ \text{kJ/mol} - 30.907\ \text{kJ/mol} \][/tex]
[tex]\[ = -103.707\ \text{kJ/mol} \][/tex]
Therefore, the enthalpy change for the reaction [tex]\( H_2(g) + Br_2(g) \rightarrow 2 HBr(g) \)[/tex] is [tex]\(-103.707\ \text{kJ/mol}\)[/tex].