Consider [tex]f(x) = e^{-x} + 9[/tex].

1. The asymptote is [tex]$\square$[/tex] (Enter the equation of the asymptote).

2. The range is [tex]$\square$[/tex] (Enter your answer in interval notation).



Answer :

To analyze the given function [tex]\( f(x) = e^{-x} + 9 \)[/tex], let's proceed step-by-step.

1. Identify the Horizontal Asymptote:

For an exponential function of the form [tex]\( f(x) = e^{-x} + c \)[/tex], the constant [tex]\( c \)[/tex] shifts the function vertically.

As [tex]\( x \)[/tex] approaches positive infinity ([tex]\( +\infty \)[/tex]), the term [tex]\( e^{-x} \)[/tex] approaches zero because the exponent [tex]\( -x \)[/tex] becomes a very large negative number, making [tex]\( e^{-x} \)[/tex] close to zero. Therefore, the function [tex]\( f(x) \)[/tex] approaches [tex]\( c \)[/tex] as [tex]\( x \)[/tex] goes to [tex]\( +\infty \)[/tex].

In our case, since [tex]\( c = 9 \)[/tex], the horizontal asymptote of the function [tex]\( f(x) = e^{-x} + 9 \)[/tex] is:
[tex]\[ y = 9 \][/tex]

2. Determine the Range:

To determine the range of [tex]\( f(x) = e^{-x} + 9 \)[/tex], examine the behavior of [tex]\( f(x) \)[/tex].

- As [tex]\( x \)[/tex] approaches negative infinity ([tex]\( -\infty \)[/tex]), the term [tex]\( e^{-x} \)[/tex] approaches positive infinity, making the function [tex]\( f(x) = e^{-x} + 9 \)[/tex] approach positive infinity.

- As [tex]\( x \)[/tex] approaches positive infinity ([tex]\( +\infty \)[/tex]), the term [tex]\( e^{-x} \)[/tex] approaches zero, and thus [tex]\( f(x) = e^{-x} + 9 \)[/tex] approaches 9.

Therefore, for any value of [tex]\( x \)[/tex], [tex]\( f(x) \)[/tex] is always greater than 9. More formally, [tex]\( f(x) \)[/tex] will take values greater than 9 but never less than 9 or exactly equal to 9 in real terms.

Hence, the range of [tex]\( f(x) = e^{-x} + 9 \)[/tex] is:
[tex]\[ (9, \infty) \][/tex]

In conclusion:
- The asymptote is:
[tex]\[ y = 9 \][/tex]

- The range is:
[tex]\[ (9, \infty) \][/tex]